|   | 
Details
   web
Records
Author Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.; Cammarano, D.; Hatfield, J.L.; Rosenzweig, C.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.F.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Kumar, S.N.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; White, J.W.; Wolf, J.
Title Multimodel ensembles of wheat growth: many models are better than one Type Journal Article
Year 2015 Publication (up) Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 21 Issue 2 Pages 911-925
Keywords Climate; Climate Change; Environment; *Models, Biological; Seasons; Triticum/*growth & development; ecophysiological model; ensemble modeling; model intercomparison; process-based model; uncertainty; wheat (Triticum aestivum L.)
Abstract Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4665
Permanent link to this record
 

 
Author Müller, C.; Waha, K.; Bondeau, A.; Heinke, J.
Title Hotspots of climate change impacts in sub-Saharan Africa and implications for adaptation and development Type Journal Article
Year 2014 Publication (up) Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 20 Issue 8 Pages 2505-2517
Keywords Africa South of the Sahara; *Climate Change; Crops, Agricultural; Environment; Hydrology; *Models, Theoretical; Uncertainty; adaptation; climate change; development; impacts; modeling; sub-Saharan Africa
Abstract Development efforts for poverty reduction and food security in sub-Saharan Africa will have to consider future climate change impacts. Large uncertainties in climate change impact assessments do not necessarily complicate, but can inform development strategies. The design of development strategies will need to consider the likelihood, strength, and interaction of climate change impacts across biosphere properties. We here explore the spread of climate change impact projections and develop a composite impact measure to identify hotspots of climate change impacts, addressing likelihood and strength of impacts. Overlapping impacts in different biosphere properties (e.g. flooding, yields) will not only claim additional capacity to respond, but will also narrow the options to respond and develop. Regions with severest projected climate change impacts often coincide with regions of high population density and poverty rates. Science and policy need to propose ways of preparing these areas for development under climate change impacts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4534
Permanent link to this record
 

 
Author Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K.
Title Can farmers’ adaptation to climate change be explained by socio-economic household-level variables Type Journal Article
Year 2012 Publication (up) Global Environmental Change Abbreviated Journal Glob. Environ. Change
Volume 22 Issue 1 Pages 223-235
Keywords Sub-Saharan Africa; Tanzania; Adaptive capacity; Index; Vulnerability; Adaptation; adaptive capacity; environmental-change; south-africa; vulnerability; variability; resilience; tanzania; framework; drought; policy
Abstract A better understanding of processes that shape farmers’ adaptation to climate change is critical to identify vulnerable entities and to develop well-targeted adaptation policies. However, it is currently poorly understood what determines farmers’ adaptation and how to measure it. In this study, we develop an activity-based adaptation index (AAI) and explore the relationship between socioeconomic variables and farmers’ adaptation behavior by means of an explanatory factor analysis and a multiple linear regression model using latent variables. The model was tested in six villages situated in two administrative wards in the Morogoro region of Tanzania. The Mlali ward represents a system of relatively high agricultural potential, whereas the Gairo ward represents a system of low agricultural potential. A household survey, a rapid rural appraisal and, a stakeholder workshop were used for data collection. The data were analyzed using factor analysis, multiple linear regression, descriptive statistical methods and qualitative content analysis. The empirical results are discussed in the context of theoretical concepts of adaptation and the sustainable livelihood approach. We found that public investment in rural infrastructure, in the availability and technically efficient use of inputs, in a good education system that provides equal chances for women, and in the strengthening of social capital, agricultural extension and, microcredit services are the best means of improving the adaptation of the farmers from the six villages in Gairo and Mlali. We conclude that the newly developed AAI is a simple but promising way to capture the complexity of adaptation processes that addresses a number of shortcomings of previous index studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3780 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4467
Permanent link to this record
 

 
Author Conradt, T.; Wechsung, F.; Bronstert, A.
Title Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances Type Journal Article
Year 2013 Publication (up) Hydrology and Earth System Sciences Abbreviated Journal Hydrol. Earth System Sci.
Volume 17 Issue 7 Pages 2947-2966
Keywords senegal river-basin; data assimilation; sensing data; regional evapotranspiration; intercomparison project; environmental-models; oklahoma experiments; solar-radiation; satellite data; scale
Abstract A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km(2)) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash-Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1607-7938 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4485
Permanent link to this record
 

 
Author König, H.J.; Uthes, S.; Schuler, J.; Zhen, L.; Purushothaman, S.; Suarma, U.; Sghaier, M.; Makokha, S.; Helming, K.; Sieber, S.; Chen, L.; Brouwer, F.; Morris, J.; Wiggering, H.
Title Regional impact assessment of land use scenarios in developing countries using the FoPIA approach: findings from five case studies Type Journal Article
Year 2013 Publication (up) Journal of Environmental Management Abbreviated Journal J. Environ. Manage.
Volume 127 Suppl Issue Pages S56-S64
Keywords Conservation of Natural Resources; Developing Countries; Environmental Monitoring/*methods; (Ex-ante) impact assessment; Indicators; Land use change; Scenario study; Stakeholder participation; Sustainable development
Abstract The impact of land use changes on sustainable development is of increasing interest in many regions of the world. This study aimed to test the transferability of the Framework for Participatory Impact Assessment (FoPIA), which was originally developed in the European context, to developing countries, in which lack of data often prevents the use of data-driven impact assessment methods. The core aspect of FoPIA is the stakeholder-based assessment of alternative land use scenarios. Scenario impacts on regional sustainability are assessed by using a set of nine regional land use functions (LUFs), which equally cover the economic, social and environmental dimensions of sustainability. The cases analysed in this study include (1) the alternative spatial planning policies around the Merapi volcano and surrounding areas of Yogyakarta City, Indonesia; (2) the large-scale afforestation of agricultural areas to reduce soil erosion in Guyuan, China; (3) the expansion of soil and water conservation measures in the Oum Zessar watershed, Tunisia; (4) the agricultural intensification and the potential for organic agriculture in Bijapur, India; and (5) the land degradation and land conflicts resulting from land division and privatisation in Narok, Kenya. All five regions are characterised by population growth, partially combined with considerable economic development, environmental degradation problems and social conflicts. Implications of the regional scenario impacts as well as methodological aspects are discussed. Overall, FoPIA proved to be a useful tool for diagnosing regional human-environment interactions and for supporting the communication and social learning process among different stakeholder groups.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4474
Permanent link to this record