|   | 
Details
   web
Records
Author Mueller, C.
Title A crop modeling response to economists’ wishlists Type Conference Article
Year 2014 Publication (up) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Assessments of climate change impacts on agricultural markets and land-use patterns rely on quantification of climate change impacts on the spatial patterns of land productivity. We supply a set of climate impact scenarios on agricultural land productivity derived from two climate models and two biophysical crop growth models to account for some of the uncertainty inherent in climate and impact models. Aggregation in space and time leads to information losses that can determine climate change impacts on agricultural markets and land-use patterns because often aggregation is across steep gradients from low to high impacts or from increases to decreases. The four climate change impact scenarios supplied here were designed to represent the most significant impacts (high emission scenario only, assumed ineffectiveness of carbon dioxide fertilization on agricultural yields, no adjustments in management) but are consistent with the assumption that changes in agricultural practices are covered in the economic models. Globally, production of individual crops decrease by 10 to 38% under these climate change scenarios, with large uncertainties in spatial patterns that are determined by both the uncertainty in climate projections and the choice of impact model. This uncertainty in climate impact on crop productivity needs to be considered by economic assessments of climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5048
Permanent link to this record
 

 
Author Nguyen, T.P.L.; Seddaiu, G.; Tidore, C.; Roggero, P.P.
Title Adaptation to climate change of Italian agricultural systems: the analysis of explorative scenarios Type Conference Article
Year 2014 Publication (up) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Adaptation of agricultural systems to climate uncertainties requires the construction of scenarios that should take into account the complexities of socio-ecological systems of a specific local context. Adaptation scenarios of agricultural systems are not making forecasts or predictions, but prospective futures or future paths. They can facilitate our understanding of how systems work and evolve. Adaptation processes of agricultural systems involve a variety of changes in local practices and social organization. The development of adaptation scenarios at farm level entails a clear understanding of farmers’ frames that are mediated by their interests, experiences and internal and external forces. Farmers’ frames is the way in which farmers frame climate issues emphasizing vulnerabilities, uncertainties and opportunities (i.e: impacts on their farming systems) and open the window for searching adaptation strategies. This study reports on the methodologies for the development of explorative scenarios (i.e., scenarios that explore the future from a variety of perspectives) for the climate change adaptation of four agricultural systems (intensive dairy cattle, extensive dairy sheep, rice farming and horticulture) in the Oristano regional pilot study in Italy. Explorative scenarios were used to explore trends into the future from the past and present. Three research steps were followed: (i) in the first step farmers’ perceptions and prospective through semi-structured interviews and questionnaires were analysed; (ii) in the second step the evolution of the agricultural systems (i.e. temporal and spatial) was evaluated; (iii) the third step examined multiple stakeholders’ outlooks about farm-level possible adaptive strategies through interactive workshops.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5050
Permanent link to this record
 

 
Author Van den Pol-van Dasselaar, A.; Bellocchi, G.; Hutchings, N.; Olesen, J.; Saetnan, E.
Title AnimalChange Type Conference Article
Year 2014 Publication (up) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The EU-FP7 project AnimalChange (AN Integration of Mitigation and Adaptation options for sustainable Livestock production under climate CHANGE, http://www.animalchange.eu, 2011-2015) addresses mitigation and adaptation options and provides scientific guidance for their integration in sustainable development pathways for livestock production under climate change in Europe, Northern and Sub-Saharan Africa, and Latin America. The project provides insights, innovations, tools and models for livestock production incorporating socio-economic and environmental (particularly GHG emission) variables. Scenario studies are carried out at scales ranging from animal and pasture, to farm and to region, for given management options. A wide range of livestock production systems is included in the project. The core analytical spine of the project is a series of coupled biophysical and socio-economic models combined with experimentation. This allows exploring future scenarios for the livestock sector under baseline and atmospheric CO2 stabilization scenarios. These scenarios are first constructed and then elaborated and enriched by breakthrough mitigation and adaptation options at field and animal scales, integrated and evaluated at farm scale and finally used to assess policy options and their socio-economic consequences. The modelling results are useful for governments, agricultural and food industry and the agricultural sector (farmers). There are many synergies between the European activities of AnimalChange and those of the LiveM theme of MACSUR, in particular with respect to access to livestock production datasets, dialogue with stakeholders and comparison and integration of grassland and livestock models with crop and socio-economic models in pilot studies at a variety of scales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5053
Permanent link to this record
 

 
Author Lellei-Kovács, E.; Barcza, Z.; Hidy, D.; Horváth, F.; Ittzés, D.; Ittzés, P.; Ma, S.; Bellocchi, G.
Title Application of Biome-BGC MuSo in managed grassland ecosystems in the Euro-Mediteranean region Type Conference Article
Year 2014 Publication (up) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Simulation of the biogeochemical cycles of extensively and intensively managed grasslands and croplands are of particular interest due to the strong connection between ecosystem production, animal husbandry and food security. In the frame of MACSUR LiveM activities, we conducted a series of „blind tests” (i.e. uncalibrated model simulations with previously optimized model) on differently managed grasslands within Europe and Israel. We used the latest version of Biome-BGC MuSo model, the modified version of the widely used biogeochemical Biome-BGC model. Biome-BGC MuSo contains structural improvements, development of management modules, and the extension of the model to simulate herbaceouos ecosystem carbon and water cycles more faithfully. The studied ecosystems were meadows and pastures located in a variety of climate zones from the Atlantic sector to Central Europe, including Mediterranean sites. Managements were intensive and extensive grazing or mowing with or without different kind of fertilizers. Under similar options we simulated ecosystem variables, e.g. Gross Primary Production (GPP) and Net Ecosystem Exchange (NEE). Our experiences show that different sites have different sensitivity to the parameters (maximum root depth, soil parameters, etc.), but overall the model provided realistic fluxes. Experiences gained during the blind tests led us to further improve the model. Biome-BGC MuSo is available as a standalone model in personal computers, but also through virtual laboratory environment and Biome-BGC Projects database (http://ecos.okologia.mta.hu/bbgcdb) developed within the BioVeL project (http://www.biovel.eu). Scientific workflow management, web service and desktop grid technology can support model optimization in the so-called „calibrated runs” within MACSUR.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5054
Permanent link to this record
 

 
Author Daccache, A.
Title Assessing water and energy footprint of irrigated agriculture in the Mediterranean Type Conference Article
Year 2014 Publication (up) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Agriculture in the Mediterranean, one of the water scarcest regions in the world is by far the largest water consuming sector. Dwindling water supply, increase in drought frequency and uncertainties associated with climate change have raised the alerts on the region’s food security and environmental sustainability. In this study, a large geo-database of global climate, soil and crop were combined with national irrigation statistics to run a water balance model to estimate the theoretical irrigation volumetric needs of the Mediterranean main strategic crops and their relative CO2 emissions. When associated with the reported crop yield and water resources availability, the spatial variability of water (m3/kg) and energy (CO2/kg) productivity across the Mediterranean region are obtained and vulnerable areas are identified. The estimated total water needs for the Mediterranean irrigated agriculture under current climate, land cover and irrigation methods was estimated to be around 46km3/year releasing more than 3Mt of CO2 in the atmosphere only from water abstraction and farm application. Currently, 59% of total irrigation water needs are located in catchments that are classified as under high and extremely high water risk. With climate change, water resources are expected to become scarcer and agriculture more dependent on irrigation to satisfy the continuous increase in food demand. Adaptation and mitigation options to tackle water scarcity and improve productivity under current and future climate will be discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5056
Permanent link to this record