|   | 
Details
   web
Records
Author von Lampe, M.; Willenbockel, D.; Ahammad, H.; Blanc, E.; Cai, Y.; Calvin, K.; Fujimori, S.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; Kyle, P.; Lotze-Campen, H.; Mason, d’C., Daniel; Nelson, G.C.; Sands, R.D.; Schmitz, C.; Tabeau, A.; Valin, H.; van der Mensbrugghe, D.; van Meijl, H.
Title Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison Type Journal Article
Year 2014 Publication (down) Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 3-3
Keywords Computable general equilibrium; Partial equilibrium; Meta-analysis; Socioeconomic pathway; Climate change; Bioenergy; Land use; Model; intercomparison; land-use change; food demand; crop productivity; climate-change; future
Abstract Recent studies assessing plausible futures for agricultural markets and global food security have had contradictory outcomes. To advance our understanding of the sources of the differences, 10 global economic models that produce long-term scenarios were asked to compare a reference scenario with alternate socioeconomic, climate change, and bioenergy scenarios using a common set of key drivers. Several key conclusions emerge from this exercise: First, for a comparison of scenario results to be meaningful, a careful analysis of the interpretation of the relevant model variables is essential. For instance, the use of real world commodity prices differs widely across models, and comparing the prices without accounting for their different meanings can lead to misleading results. Second, results suggest that, once some key assumptions are harmonized, the variability in general trends across models declines but remains important. For example, given the common assumptions of the reference scenario, models show average annual rates of changes of real global producer prices for agricultural products on average ranging between -0.4% and +0.7% between the 2005 base year and 2050. This compares to an average decline of real agricultural prices of 4% p.a. between the 1960s and the 2000s. Several other common trends are shown, for example, relating to key global growth areas for agricultural production and consumption. Third, differences in basic model parameters such as income and price elasticities, sometimes hidden in the way market behavior is modeled, result in significant differences in the details. Fourth, the analysis shows that agro-economic modelers aiming to inform the agricultural and development policy debate require better data and analysis on both economic behavior and biophysical drivers. More interdisciplinary modeling efforts are required to cross-fertilize analyses at different scales.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4822
Permanent link to this record
 

 
Author Müller, C.; Robertson, R.D.
Title Projecting future crop productivity for global economic modeling Type Journal Article
Year 2014 Publication (down) Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 37-50
Keywords climate change; crop modeling; agricultural productivity; land use; greenhouse-gas emissions; soil organic-carbon; sub-saharan africa; climate-change; elevated co2; land-use; system model; wheat yields; maize yields; agriculture
Abstract Assessments of climate change impacts on agricultural markets and land-use patterns rely on quantification of climate change impacts on the spatial patterns of land productivity. We supply a set of climate impact scenarios on agricultural land productivity derived from two climate models and two biophysical crop growth models to account for some of the uncertainty inherent in climate and impact models. Aggregation in space and time leads to information losses that can determine climate change impacts on agricultural markets and land-use patterns because often aggregation is across steep gradients from low to high impacts or from increases to decreases. The four climate change impact scenarios supplied here were designed to represent the most significant impacts (high emission scenario only, assumed ineffectiveness of carbon dioxide fertilization on agricultural yields, no adjustments in management) but are consistent with the assumption that changes in agricultural practices are covered in the economic models. Globally, production of individual crops decrease by 10-38% under these climate change scenarios, with large uncertainties in spatial patterns that are determined by both the uncertainty in climate projections and the choice of impact model. This uncertainty in climate impact on crop productivity needs to be considered by economic assessments of climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4533
Permanent link to this record
 

 
Author Toscano, P.; Genesio, L.; Crisci, A.; Vaccari, F.P.; Ferrari, E.; La Cava, P.; Porter, J.R.; Gioli, B.
Title Empirical modelling of regional and national durum wheat quality Type Journal Article
Year 2015 Publication (down) Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 204 Issue Pages 67-78
Keywords durum wheat; grain protein content; forecasting tool; modelling; gridded data; red winter-wheat; grain quality; climate-change; mediterranean conditions; interannual variability; protein-composition; co2 concentration; vapor-pressure; carbon-dioxide; crop yield
Abstract The production of durum wheat in the Mediterranean basin is expected to experience increased variability in yield and quality as a consequence of climate change. To assess how environmental variables and agronomic practices affect grain protein content (GPC), a novel approach based on monthly gridded input data has been implemented to develop empirical model, and validated on historical time series to assess its capability to reproduce observed spatial and inter-annual GPC variability. The model was applied in four Italian regions and at the whole national scale and proved reliable and usable for operational purposes also in a forecast ‘real-time’ mode before harvesting. Precipitable water during autumn to winter and air temperature from anthesis to harvest were extremely important influences on GPC; these and additional variables, included in a linear model, were able to account for 95% of the variability in GPC that has occurred in the last 15 years in Italy. Our results are a unique example of the use of modelling as a predictive real-time platform and are a useful tool to understand better and forecast the impacts of future climate change projections on durum wheat production and quality.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4818
Permanent link to this record
 

 
Author Crout, N.M.J.; Craigon, J.; Cox, G.M.; Jao, Y.; Tarsitano, D.; Wood, A.T.A.; Semenov, M.
Title An objective approach to model reduction: Application to the Sirius wheat model Type Journal Article
Year 2014 Publication (down) Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 189-190 Issue 100 Pages 211-219
Keywords Complexity; Crop model; Evaluation; Model reduction; Parsimony; Wheat
Abstract An existing simulation model of wheat growth and development, Sirius, was evaluated through a systematic model reduction procedure. The model was automatically manipulated under software control to replace variables within the model structure with constants, individually and in combination. Predictions of the resultant models were compared to growth analysis observations of total biomass, grain yield, and canopy leaf area derived from 9 trials conducted in the UK and New Zealand under optimal, nitrogen limiting and drought conditions. Model performance in predicting these observations was compared in order to evaluate whether individual model variables contributed positively to the overall prediction. Of the 1 1 1 model variables considered 16 were identified as potentially redundant. Areas of the model where there was evidence of redundancy were: (a) translocation of biomass carbon to grain; (b) nitrogen physiology; (c) adjustment of air temperature for various modelled processes; (d) allowance for diurnal variation in temperature; (e) vernalisation (f) soil nitrogen mineralisation (g) soil surface evaporation. It is not suggested that these are not important processes in real crops, rather, that their representation in the model cannot be justified in the context of the analysis. The approach described is analogous to a detailed model inter-comparison although it would be better described as a model intra-comparison as it is based on the comparison of many simplified forms of the same model. The approach provides automation to increase the efficiency of the evaluation and a systematic means of increasing the rigour of the evaluation.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4788
Permanent link to this record
 

 
Author Zhao, G.; Siebert, S.; Enders, A.; Rezaei, E.E.; Yan, C.; Ewert, F.
Title Demand for multi-scale weather data for regional crop modeling Type Journal Article
Year 2015 Publication (down) Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 200 Issue Pages 156-171
Keywords multi-scale; spatial heterogeneity; spatial resolution; crop model; climate variability; climate-change scenarios; integrated assessment; large-scale; phenological development; agricultural systems; spatial-resolution; data aggregation; european-union; winter-wheat; input data
Abstract A spatial resolution needs to be determined prior to using models to simulate crop yields at a regional scale, but a dilemma exists in compromising between different demands. A fine spatial resolution demands extensive computation load for input data assembly, model runs, and output analysis. A coarse spatial resolution could result in loss of spatial detail in variability. This paper studied the impact of spatial resolution, data aggregation and spatial heterogeneity of weather data on simulations of crop yields, thus providing guidelines for choosing a proper spatial resolution for simulations of crop yields at regional scale. Using a process-based crop model SIMPLACE (LINTUL2) and daily weather data at 1 km resolution we simulated a continuous rainfed winter wheat cropping system at the national scale of Germany. Then we aggregated the weather data to four resolutions from 10 to 100 km, repeated the simulation, compared them with the 1 km results, and correlated the difference with the intra-pixel heterogeneity quantified by an ensemble of four semivariogram models. Aggregation of weather data had small effects over regions with a flat terrain located in northern Germany, but large effects over southern regions with a complex topography. The spatial distribution of yield bias at different spatial resolutions was consistent with the intra-pixel spatial heterogeneity of the terrain and a log-log linear relationship between them was established. By using this relationship we demonstrated the way to optimize the model resolution to minimize both the number of simulation runs and the expected loss of spatial detail in variability due to aggregation effects. We concluded that a high spatial resolution is desired for regions with high spatial environmental heterogeneity, and vice versa. This calls for the development of multi-scale approaches in regional and global crop modeling. The obtained results require substantiation for other production situations, crops, output variables and for different crop models. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4753
Permanent link to this record