toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Boote, K.J.; Porter, C.; Jones, J.W.; Thorburn, P.J.; Kersebaum, K.C.; Hoogenboom, G.; White, J.W.; Hatfield, J.L. doi  openurl
  Title Sentinel site data for crop model improvement—definition and characterization Type Book Chapter
  Year 2016 Publication (up) Improving Modeling Tools to Assess Climate Change Effects on Crop Response Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Crop models are increasingly being used to assess the impacts of future climate change on production and food security. High quality, site-specific data on weather, soils, management, and cultivar are needed for those model applications. Also important is that model development, evaluation, improvement, and calibration require additional high quality, site-specific measurements on crop yield, growth, phenology, and ancillary traits. We review the evolution of minimum data set requirements for agroecosystem modeling and then describe the characteristics and ranking of sentinel site data needed for crop model improvement, calibration, and application. We in the Agricultural Model Intercomparison and Improvement Project (AgMIP), propose to rank sentinel site data sets as platinum, gold, silver, and copper, based on the degree of true site-specific measurement of weather, soils, management, crop yield, as well as the quality, comprehensiveness, quantity, accuracy, and value. For example, to be ranked platinum, the weather and soil characterization must be measured on-site, and all management inputs must be known. Dataset ranking will be lower for weather measured off-site or soil traits estimated from soil mapping. Ranking also depends on the intended purposes for data use. If the purpose is to improve a crop model for response to water or N, then additional observations are necessary, such as initial soil water, initial soil inorganic N, and plant N uptake during the growing season to be ranked platinum. Rankings are enhanced by presence of multiple treatments and sites. Examples of platinum-, gold-, and silver-quality data sets for model improvement and calibration uses are illustrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Hatfield, J.L.; Fleisher, D.  
  Language Summary Language Original Title  
  Series Editor Series Title Advances in Agricultural Systems Modeling Abbreviated Series Title  
  Series Volume 7 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4980  
Permanent link to this record
 

 
Author Murat, M.; Malinowska, I.; Hoffmann, H.; Baranowski, P. url  doi
openurl 
  Title Statistical modelling of agrometeorological time series by exponential smoothing Type Journal Article
  Year 2016 Publication (up) International Agrophysics Abbreviated Journal International Agrophysics  
  Volume 30 Issue 1 Pages 57-65  
  Keywords exponential smoothing; meteorological time series; statistical forecasting; daily temperature records; weighted moving averages; climate-change; prediction; forecasts; state; weather  
  Abstract Meteorological time series are used in modelling agrophysical processes of the soil-plant-atmosphere system which determine plant growth and yield. Additionally, longterm meteorological series are used in climate change scenarios. Such studies often require forecasting or projection of meteorological variables, eg the projection of occurrence of the extreme events. The aim of the article was to determine the most suitable exponential smoothing models to generate forecast using data on air temperature, wind speed, and precipitation time series in Jokioinen (Finland), Dikopshof (Germany), Lleida (Spain), and Lublin (Poland). These series exhibit regular additive seasonality or non-seasonality without any trend, which is confirmed by their autocorrelation functions and partial autocorrelation functions. The most suitable models were indicated by the smallest mean absolute error and the smallest root mean squared error.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0236-8722 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4728  
Permanent link to this record
 

 
Author Xiao, D.P.; Tao, F.L. url  doi
openurl 
  Title Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009 Type Journal Article
  Year 2016 Publication (up) International Journal of Biometeorology Abbreviated Journal International Journal of Biometeorology  
  Volume 60 Issue 7 Pages 1111-1122  
  Keywords Adaptation; Agronomic practice; Maize yield; Negative impact; Climate; change; model; variability; performance; simulation; province; apsim; gaps  
  Abstract The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize (Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7128 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4779  
Permanent link to this record
 

 
Author Leogrande, R.; Vitti, C.; Lopedota, O.; Ventrella, D.; Montemurro, F. url  doi
openurl 
  Title Effects of Irrigation Volume and Saline Water On Maize Yield and Soil in Southern Italy: Irrigation with saline water on maize Type Journal Article
  Year 2016 Publication (up) Irrig. and Drain. Abbreviated Journal Irrig. and Drain.  
  Volume 65 Issue 3 Pages 243-253  
  Keywords  
  Abstract A field experiment was carried out in southern Italy to investigate the effects of irrigation and salinity on a maize crop and soil properties. The experiment was laid out comparing different irrigation rates (I1, I2, I3—re-establishing 50, 75 and 100% of the calculated maximum evapotranspiration) and water quality (FW, fresh water and SW, saline water). Grain yield was significantly greater by 60% in 2008 than in 2010. No significant difference was shown for grain yield between the irrigation treatments, whereas water productivity decreased significantly with increasing irrigation rates. Irrigation with saline water did not significantly reduce grain yield compared with fresh water, but it improved grain quality with higher protein content (9.1%) and lower grain moisture percentage (13.3%). Saline water determined a significant increase of saturated soil paste extract Na, ECe, SAR, some exchangeable cations and ESP compared with FW in both years. Furthermore, at the end of the experiment these parameters were lower than those at the end of the first maize crop. Lastly, in the saline treatment, at the end of the trial, the ECe and ESP values were below the critical threshold for soil salinization and/or sodification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1531-0353 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4990  
Permanent link to this record
 

 
Author Heinschink, K.; Lembacher, F.; Sinabell, F.; Trible, C. url  openurl
  Title Crop production costs in Austria: Comparison of simulated results and farm observations Type Conference Article
  Year 2016 Publication (up) Jahrbuch der ÖGA Abbreviated Journal  
  Volume 26 Issue Pages 33-34  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 26. Jahrestagung der Österreichischen Gesellschaft für Agrarökonomie, 2016-09-15 to 2016-09-16, Vienna, Austria  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5025  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: