toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Köchy, M.; Hiederer, R.; Freibauer, A. url  doi
openurl 
  Title Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world Type Journal Article
  Year 2015 Publication Soil Abbreviated Journal Soil  
  Volume 1 Issue Pages 351-365  
  Keywords  
  Abstract •Soils contain 1062 Pg organic C (SOC) in 0-1 m depth based on the adjusted Harmonized World Soil Database. Different estimates of bulk density of Histosols cause an uncertainty in the range of -56/+180 Pg. We also report the frequency distribution of SOC stocks by continent, wetland type, and permafrost type. Using additional estimates for frozen and deeper soils, global soils are estimated to contain 1325 Pg SOC in 0-1m and ca. 3000 Pg, including deeper layers. The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD’s bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm−3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of −56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of “wetland”, wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of “peatland”.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-398x ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) LiveM, Hub, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4686  
Permanent link to this record
 

 
Author Christen, B.; Kjeldsen, C.; Dalgaard, T.; Martin-Ortega, J. url  doi
openurl 
  Title Can fuzzy cognitive mapping help in agricultural policy design and communication? Type Journal Article
  Year 2015 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 45 Issue Pages 64-75  
  Keywords Agricultural policy; Agro-environmental measures; Fuzzy cognitive mapping (FCM); General Binding Rules; Stakeholder communication; Scottish agriculture  
  Abstract Highlights •Fuzzy cognitive mapping (FCM)can help to improve agricultural policy design. •We analyse the views on regulation between farmers and non-farmers. •We demonstrate the utility of FCM in disentangling reasons for non-compliance. •Non-compliance is a result of dis-alignment of views rather than unwillingness. •FCM offers a critical, reflexive approach to how a regulatory process is conceived. Agricultural environmental regulation often fails to deliver the desired effects because of farmers adopting the related measures incorrectly or not at all. This is due to several barriers to the uptake of the prescribed environmentally beneficial farm management practices, most of which have been well established by social science research. Yet it is unclear why these barriers remain so difficult to overcome despite numerous and persistent attempts at the design, communication and enforcement of related agricultural policies. This paper examines the potential of fuzzy cognitive mapping (FCM) as a tool to disentangle the underlying reasons of this persistent problem. We present the FCM methodology as adapted to the application in a Scottish case study on how environmental regulation affects farmers and farming practice and what factors are important for compliance or non-compliance with this regulation. The study compares the views of two different stakeholder groups on this matter using FCM network visualizations that were validated by interviews and a workshop session. There was a farmers group representing a typical mix of Scottish farming systems and a non-farmers group, the latter comprising professionals from the fields of design, implementation, administration, consulting on and enforcement of agricultural policies. Between the two groups, the FCM process reveals a very different perception of importance and interaction of factors and strongly suggests that the problem lies in an institutional failure rather than in a simple unwillingness of farmers to obey the rules. FCM allows for a structured process of identifying areas of conflicting perceptions, but also areas where strongly differing groups of stakeholders might be able to gain common ground. In this way, FCM can help to identify anchoring points for targeted policy development and has the potential of becoming a useful tool in agricultural policy design and communication. Our results show the utility of FCM by pointing out how Scottish environmental regulation could be altered to increase compliance with the rules and where the reasons for the identified institutional failure might be sought.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4620  
Permanent link to this record
 

 
Author van Lingen, H.J.; Plugge, C.M.; Fadel, J.G.; Kebreab, E.; Bannink, A.; Dijkstra, J. url  doi
openurl 
  Title Correction: Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation Type Miscellaneous
  Year 2016 Publication PLoS One Abbreviated Journal PLoS One  
  Volume 11(12) Issue 12 Pages e0168052  
  Keywords  
  Abstract [This corrects the article DOI: 10.1371/journal.pone.0161362.].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes (down) LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5020  
Permanent link to this record
 

 
Author Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J. url  doi
openurl 
  Title Modeling Greenhouse Gas Emissions from Enteric Fermentation Type Book Chapter
  Year 2016 Publication Advances in Agricultural Systems Abbreviated Journal  
  Volume 6 Issue Pages 173-196  
  Keywords  
  Abstract Livestock directly contribute to greenhouse gas (GHG) emissions mainly through methane (CH4) and nitrous oxide (N2O) emissions. For cost and practicality reasons, quantification of GHG has been through development of various types of mathematical models. This chapter addresses the utility and limitations of mathematical models used to estimate enteric CH4 emissions from livestock production. Models used in GHG quantification can be broadly classified into either empirical or mechanistic models. Empirical models might be easier to use because they require fewer input variables compared with mechanistic models. However, their applicability in assessing mitigation options such as dietary manipulation may be limited. The major driving variables identified for both types of models include feed intake, lipid and nonstructural carbohydrate content of the feed, and animal variables. Knowledge gaps identified in empirical modeling were that some of the assumptions might not be valid because of geographical location, health status of animals, genetic differences, or production type. In mechanistic modeling, errors related to estimating feed intake, stoichiometry of volatile fatty acid (VFA) production, and acidity of rumen contents are limitations that need further investigation. Model prediction uncertainty was also investigated, and, depending on the intensity and source of the prediction uncertainty, the mathematical model may inaccurately predict the observed values with more or less variability. In conclusion, although there are quantification tools available, global collaboration is required to come to a consensus on quantification protocols. This can be achieved through developing various types of models specific to region, animal, and production type using large global datasets developed through international collaboration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Kebreab, E.  
  Language Summary Language Original Title  
  Series Editor Series Title Synthesis and Modeling of Greenhouse Gas Emissions and Carbon Storage in Agricultural and Forest Systems to Guide Mitigation and Adaptation Abbreviated Series Title  
  Series Volume Advances in Agricultural Systems (6) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5032  
Permanent link to this record
 

 
Author Sándor, R.; Ehrhardt, F.; Basso, B.; Bellocchi, G.; Bhatia, A.; Brilli, L.; Migliorati, M.D.A.; Doltra, J.; Dorich, C.; Doro, L.; Fitton, N.; Giacomini, S.J.; Grace, P.; Grant, B.; Harrison, M.T.; Jones, S.; Kirschbaum, M.U.F.; Klumpp, K.; Laville, P.; Léonard, J.; Liebig, M.; Lieffering, M.; Martin, R.; McAuliffe, R.; Meier, E.; Merbold, L.; Moore, A.; Myrgiotis, V.; Newton, P.; Pattey, E.; Recous, S.; Rolinski, S.; Sharp, J.; Massad, R.S.; Smith, P.; Smith, W.; Snow, V.; Wu, L.; Zhang, Q.; Soussana, J.F. url  doi
openurl 
  Title C and N models Intercomparison – benchmark and ensemble model estimates for grassland production Type Journal Article
  Year 2016 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 7 Issue 03 Pages 245-247  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-4700 ISBN Medium  
  Area Expedition Conference  
  Notes (down) LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4868  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: