toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhen, L.; Deng, X.; Wei, Y.; Jiang, Q.; Lin, Y.; Helming, K.; Wang, C.; König, H.J.; Hu, J. url  doi
openurl 
  Title Future land use and food security scenarios for the Guyuan district of remote western China Type Journal Article
  Year 2014 Publication iForest Abbreviated Journal iForest  
  Volume 7 Issue 6 Pages 372-384  
  Keywords land-use patterns; scenario analysis; dynamics of land systems modeling; food security; guyuan district; north-central china; cultivated land; dynamics; conversion; policy  
  Abstract Government policy is a major human factor that causes changes in land use. Decisions on land management and land-use planning, as well as the analysis and quantification of policy consequences, may greatly benefit from the simulation of the dynamics of land-use systems. In the present study, we predicted land-use changes and their potential impacts on food security in the environmentally fragile Guyuan District, Ningxia Hui Autonomous Region (north-central China), under the influence of a program to convert sloping agricultural land to conservation uses. Baseline and conservation policy scenarios (2005 to 2020) were developed based on input from local stakeholders and expert knowledge. For the baseline and conservation policies, we formulated high-, moderate-, and low-growth scenarios, analyzed the driving mechanisms responsible for the land-use dynamics, and then applied a previously developed “dynamics of land systems” model to simulate changes in land uses based on the driving mechanisms. We found that spatially explicit policies can promote the conversion of land to more sustainable uses; however, decreasing the amount of agricultural and urban land and increasing grassland and forest cover will increase the risk of grain shortages, and the effect will be more severe under the conservation and high- growth scenarios than under the baseline and low-growth scenarios. The Guyuan case study suggests that, during the next decade, important trade-offs between environmental conservation and food security will inevitably occur. Future land-use decisions should carefully consider the balance between land resource conservation, agricultural production, and urban expansion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1971-7458 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM Approved no  
  Call Number MA @ admin @ Serial 4547  
Permanent link to this record
 

 
Author Kanellopoulos, A.; Reidsma, P.; Wolf, J.; van Ittersum, M.K. url  doi
openurl 
  Title Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: An application of benchmarking and bio-economic farm modelling Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 52 Issue Pages 69-80  
  Keywords integrated assessment; data envelopment analysis; farm adaptation; farm model; technical efficiency; agricultural land-use; integrated assessment; european-community; future; crop; efficiency; impacts; systems  
  Abstract Future farming systems are challenged to adapt to the changing socio-economic and bio-physical environment in order to remain competitive and to meet the increasing requirements for food and fibres. The scientific challenge is to evaluate the consequences of predefined scenarios, identify current “best” practices and explore future adaptation strategies at farm level. The objective of this article is to assess the impact of different climate change and socio-economic scenarios on arable farming systems in Flevoland (the Netherlands) and to explore possible adaptation strategies. Data Envelopment Analysis was used to identify these current “best” practices while bio-economic modelling was used to calculate a number of important economic and environmental indicators in scenarios for 2050. Relative differences between yields with and without climate change and technological change were simulated with a crop bio-physical model and used as a correction factors for the observed crop yields of current “best” practices. We demonstrated the capacity of the proposed methodology to explore multiple scenarios by analysing the importance of drivers of change, while accounting for variation between individual farms. It was found that farmers in Flevoland are in general technically efficient and a substantial share of the arable land is currently under profit maximization. We found that climate change increased productivity in all tested scenarios. However, the effects of different socio-economic scenarios (globalized and regionalized economies) on the economic and environmental performance of the farms were variable. Scenarios of a globalized economy where the prices of outputs were simulated to increase substantially might result in increased average gross margin and lower average (per ha) applications of crop protection and fertilizers. However, the effects might differ between different farm types. It was found that, the abolishment of sugar beet quota and changes of future prices of agricultural inputs and outputs in such socio-economic scenario (i.e. globalized economy) caused a decrease in gross margins of smaller (in terms of economic size) farms, while gross margin of larger farms increased. In scenarios where more regionalized economies and a moderate climate change are assumed, the future price ratios between inputs and outputs are shown to be the key factors for the viability of arable farms in our simulations. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM Approved no  
  Call Number MA @ admin @ Serial 4526  
Permanent link to this record
 

 
Author Kahiluoto, H.; Kaseva, J.; Hakala, K.; Himanen, S.J.; Jauhiainen, L.; Rötter, R.P.; Salo, T.; Trnka, M. url  doi
openurl 
  Title Cultivating resilience by empirically revealing response diversity Type Journal Article
  Year 2014 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 25 Issue Pages 186-193  
  Keywords generic approach; climate change; food security; agrifood systems; cultivars; adaptive capacity; climate-change; functional diversity; plant-communities; genetic diversity; biodiversity; ecosystems; management; redundancy; evenness; weather  
  Abstract Intensified climate and market turbulence requires resilience to a multitude of changes. Diversity reduces the sensitivity to disturbance and fosters the capacity to adapt to various future scenarios. What really matters is diversity of responses. Despite appeals to manage resilience, conceptual developments have not yet yielded a break-through in empirical applications. Here, we present an approach to empirically reveal the ‘response diversity’: the factors of change that are critical to a system are identified, and the response diversity is determined based on the documented component responses to these factors. We illustrate this approach and its added value using an example of securing food supply in the face of climate variability and change. This example demonstrates that quantifying response diversity allows for a new perspective: despite continued increase in cultivar diversity of barley, the diversity in responses to weather declined during the last decade in the regions where most of the barley is grown in Finland. This was due to greater homogeneity in responses among new cultivars than among older ones. Such a decline in the response diversity indicates increased vulnerability and reduced resilience. The assessment serves adaptive management in the face of both ecological and socioeconomic drivers. Supplier diversity in the food retail industry in order to secure affordable food in spite of global price volatility could represent another application. The approach is, indeed, applicable to any system for which it is possible to adopt empirical information regarding the response by its components to the critical factors of variability and change. Targeting diversification in response to critical change brings efficiency into diversity. We propose the generic procedure that is demonstrated in this study as a means to efficiently enhance resilience at multiple levels of agrifood systems and beyond. (C) 2014 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM Approved no  
  Call Number MA @ admin @ Serial 4525  
Permanent link to this record
 

 
Author Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. url  doi
openurl 
  Title Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization Type Journal Article
  Year 2012 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 12 Issue 3 Pages 407-419  
  Keywords Modelling; Climate change; Agronomic adaptation strategies; Yield; Tomato; Winter durum wheat; air co2 enrichment; change scenarios; cropping systems; change impacts; simulation; agriculture; variability; increase; model; responses; Environmental Sciences & Ecology  
  Abstract Agricultural crops are affected by climate change due to the relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. In particular, the further reduction in existing limited water resources combined with an increase in temperature may result in higher impacts on agricultural crops in the Mediterranean area than in other regions. In this study, the cropping system models CERES-Wheat and CROPGRO-Tomato of the Decision Support System for Agrotechnology Transfer (DSSAT) were used to analyse the response of winter durum wheat (Triticum aestivum L.) and tomato (Lycopersicon esculentum Mill.) crops to climate change, irrigation and nitrogen fertilizer managements in one of most productive areas of Italy (i.e. Capitanata, Puglia). For this analysis, three climatic datasets were used: (1) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2A degrees C (centred over 2030-2060) and +5A degrees C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). Adaptation strategies, such as irrigation and N fertilizer managements, have been investigated to either avoid or at least reduce the negative impacts induced by climate change impacts for both crops. Warmer temperatures were primarily shown to accelerate wheat and tomato phenology, thereby resulting in decreased total dry matter accumulation for both tomato and wheat under the +5A degrees C future climate scenario. Under the +2A degrees C scenario, dry matter accumulation and resulting yield were also reduced for tomato, whereas no negative yield effects were observed for winter durum wheat. In general, limiting the global mean temperature change of 2A degrees C, the application of adaptation strategies (irrigation and nitrogen fertilization) showed a positive effect in minimizing the negative impacts of climate change on productivity of tomato cultivated in southern Italy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 1436-378x ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM Approved no  
  Call Number MA @ admin @ Serial 4480  
Permanent link to this record
 

 
Author De Sanctis, G.; Roggero, P.P.; Seddaiu, G.; Orsini, R.; Porter, C.H.; Jones, J.W. url  doi
openurl 
  Title Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area Type Journal Article
  Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 40 Issue Pages 18-27  
  Keywords N fertilization; C dynamics; DSSAT; Wheat; Maize; Weed fallow; sandy loam soil; cropping systems; agricultural systems; climate-change; winter-wheat; sequestration; matter; model; fertilization; dynamics  
  Abstract The differential impact on soil organic carbon (SOC) of applying no tillage (NT) compared to conventional tillage (CT, i.e. mouldboard ploughing), along with three rates of nitrogen (N) fertilizer application (0,90 and 180 kg ha(-1) y(-1)), was studied under rain-fed Mediterranean conditions in a long-term experiment based on a durum wheat-maize rotation, in which crop residues were left on the soil (NT) or incorporated (CT). Observed SOC content following 8 and 12 years of continuous treatment application was significantly higher in the top 10 cm of the soil under NT than CT, but it was similar in the 10-40 cm layer. NT grain yields for both maize and durum wheat were below those attained under CT (on average 32% and 14% lower respectively) at a given rate of N fertilizer application. Soil, climate and crop data over 5 years were used to calibrate DSSAT model in order to simulate the impact of the different management practices over a 50-year period. Good agreement was obtained between observed and simulated values for crops grain yield, above-ground biomass and observed SOC values. Results from the simulations showed that under NT the weeds growing during the intercrop fallow period made a significant contribution to the observed SOC increase. When the contribution of the weed fallow was considered, NT significantly increased SOC in the top 40 cm of the soil at an average rate of 0.43, 0.31 and 0.03 t ha(-1) per year, respectively for 180,90 and 0 kg N ha(-1) year(-1), within the simulated 50 years. Under CT, a significant SOC increase was simulated under N180 and a significant decrease when no fertilizer was supplied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium article  
  Area Expedition Conference  
  Notes (down) CropM Approved no  
  Call Number MA @ admin @ Serial 4469  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: