|   | 
Details
   web
Records
Author Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E.
Title Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 62 Issue Pages 55-64
Keywords nitrogen; leaching; organic farming; wheat; barley; climate-change; catch crops; nitrogen mineralization; winter-wheat; arable crop; european agriculture; farming systems; spring barley; cover crops; soil
Abstract The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3-N) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction cups. The effects of climate, soil and management were examined in a linear mixed model, and only parameters with significant effect (P < 0.05) were included in the final model. The model explained 61% and 47% of the variation in the square root transform of flow-weighted annual NO3-N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3-N leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop management. There were significant effects on annual N concentration and NO3-N leaching of location, rotation, previous crop and crop cover during autumn and winter. The relative effects of temperature and precipitation differed between seasons and cropping systems. A sensitivity analysis revealed that the predicted N concentration and leaching increased with increases in temperature and precipitation. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes (up) CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4562
Permanent link to this record
 

 
Author Raymundo, R.; Asseng, S.; Prassad, R.; Kleinwechter, U.; Concha, J.; Condori, B.; Bowen, W.; Wolf, J.; Olesen, J.E.; Dong, Q.; Zotarelli, L.; Gastelo, M.; Alva, A.; Travasso, M.; Quiroz, R.; Arora, V.; Graham, W.; Porter, C.
Title Performance of the SUBSTOR-potato model across contrasting growing conditions Type Journal Article
Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 202 Issue Pages 57-76
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium article
Area Expedition Conference
Notes (up) CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4967
Permanent link to this record
 

 
Author Fleisher, D.H.; Condori, B.; Quiroz, R.; Alva, A.; Asseng, S.; Barreda, C.; Bindi, M.; Boote, K.J.; Ferrise, R.; Franke, A.C.; Govindakrishnan, P.M.; Harahagazwe, D.; Hoogenboom, G.; Naresh Kumar, S.; Merante, P.; Nendel, C.; Olesen, J.E.; Parker, P.S.; Raes, D.; Raymundo, R.; Ruane, A.C.; Stockle, C.; Supit, I.; Vanuytrecht, E.; Wolf, J.; Woli, P.
Title A potato model intercomparison across varying climates and productivity levels Type Journal Article
Year 2017 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 23 Issue 3 Pages 1258-1281
Keywords
Abstract A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United States) management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with interannual variability, and predictions for all agronomic variables were significantly different from one model to another (P < 0.001). Uncertainty averaged 15% higher for low- vs. high-input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41% and 23% for yield and ET, respectively, as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for nonirrigated sites). Differences in predictions due to model representation of light utilization were significant (P < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium article
Area Expedition Conference
Notes (up) CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4968
Permanent link to this record
 

 
Author Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.
Title Uncertainty in simulating wheat yields under climate change Type Journal Article
Year 2013 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 3 Issue 9 Pages 827-832
Keywords crop production; models; food; co2; temperature; projections; adaptation; scenarios; ensemble; impacts
Abstract Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x ISBN Medium Article
Area Expedition Conference
Notes (up) CropM, ftnotmacsur, IPCC-AR5 Approved no
Call Number MA @ admin @ Serial 4599
Permanent link to this record
 

 
Author Olesen, J.E.; Niemeyer, S.; Ceglar, A.; Roggero, P.-P.; Lehtonen, H.; Schönhart, M.; Kipling, R.
Title Section 5.3. Agriculture Type Book Chapter
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 223-243
Keywords
Abstract
Address
Corporate Author Thesis
Publisher European Environmental Agency Place of Publication Copenhagen, Denmark Editor
Language Summary Language Original Title
Series Editor Series Title Climate change, impacts and vulnerability in Europe 2016. An indicator-based report Abbreviated Series Title
Series Volume EEA Report (1/2017) Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) CropM, LiveM, TradeM Approved no
Call Number MA @ admin @ Serial 4964
Permanent link to this record