|   | 
Details
   web
Records
Author Hjelkrem, A.-G.R.; Höglind, M.; van Oijen, M.; Schellberg, J.; Gaiser, T.; Ewert, F.
Title Sensitivity analysis and Bayesian calibration for testing robustness of the BASGRA model in different environments Type Journal Article
Year 2017 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume 359 Issue Pages 80-91
Keywords Metropolis-hasting; Morris method; Reducing complexity; Robustness
Abstract Highlights • The parameters to be fixed were consistent across sites. • Model calibration must be performed separately for each specific case. • Possible to reduce model parameters from 66 to 45. • Strong model reductions must be avoided. • The error term for the training data were characterised by timing (phase shift). Abstract Proper parameterisation and quantification of model uncertainty are two essential tasks in improvement and assessment of model performance. Bayesian calibration is a method that combines both tasks by quantifying probability distributions for model parameters and outputs. However, the method is rarely applied to complex models because of its high computational demand when used with high-dimensional parameter spaces. We therefore combined Bayesian calibration with sensitivity analysis, using the screening method by Morris (1991), in order to reduce model complexity by fixing parameters to which model output was only weakly sensitive to a nominal value. Further, the robustness of the model with respect to reduction in the number of free parameters were examined according to model discrepancy and output uncertainty. The process-based grassland model BASGRA was examined in the present study on two sites in Norway and in Germany, for two grass species (Phleum pratense and Arrhenatherum elatius). According to this study, a reduction of free model parameters from 66 to 45 was possible. The sensitivity analysis showed that the parameters to be fixed were consistent across sites (which differed in climate and soil conditions), while model calibration had to be performed separately for each combination of site and species. The output uncertainty decreased slightly, but still covered the field observations of aboveground biomass. Considering the training data, the mean square error for both the 66 and the 45 parameter model was dominated by errors in timing (phase shift), whereas no general pattern was found in errors when using the validation data. Stronger model reduction should be avoided, as the error term increased and output uncertainty was underestimated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium
Area Expedition Conference
Notes (down) CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5010
Permanent link to this record
 

 
Author Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.
Title Uncertainty in simulating wheat yields under climate change Type Journal Article
Year 2013 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 3 Issue 9 Pages 827-832
Keywords crop production; models; food; co2; temperature; projections; adaptation; scenarios; ensemble; impacts
Abstract Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ftnotmacsur, IPCC-AR5 Approved no
Call Number MA @ admin @ Serial 4599
Permanent link to this record
 

 
Author Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Antle, J.M.; Nelson, G.C.; Porter, C.; Janssen, S.; Asseng, S.; Basso, B.; Ewert, F.; Wallach, D.; Baigorria, G.; Winter, J.M.
Title The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies Type Journal Article
Year 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 170 Issue Pages 166-182
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium
Area Expedition Conference
Notes (down) CropM, ftnotmacsur, IPCC-AR5 Approved no
Call Number MA @ admin @ Serial 4927
Permanent link to this record
 

 
Author Teixeira, E.I.; Fischer, G.; van Velthuizen, H.; Walter, C.; Ewert, F.
Title Global hot-spots of heat stress on agricultural crops due to climate change Type Journal Article
Year 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 170 Issue Pages 206-215
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium
Area Expedition Conference
Notes (down) CropM, ftnotmacsur, IPCC-AR5 Approved no
Call Number MA @ admin @ Serial 4929
Permanent link to this record
 

 
Author Siebert, S.; Ewert, F.; Rezaei, E.E.; Kage, H.; Grass, R.
Title Impact of heat stress on crop yield-on the importance of considering canopy temperature Type Journal Article
Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 9 Issue 4 Pages
Keywords heat stress; crop yield; temperature; soil moisture; modelling; wheat; rye; harvest index; wheat yields; climate-change; winter-wheat; grain number; extreme heat; maize; variability; irrigation; drought
Abstract Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 degrees C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994-2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4814
Permanent link to this record