|   | 
Details
   web
Records
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczaki, J.; Lorite, I.J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Ozturk, I.; Perego, A.; Rodriguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rotter, R.P.
Title Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Journal Article
Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 209-224
Keywords Classification; Climate change; Crop model; Ensemble; Sensitivity analysis; Wheat; Climate-Change; Crop Models; Probabilistic Assessment; Simulating; Impacts; British Catchments; Uncertainty; Europe; Productivity; Calibration; Adaptation
Abstract Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9 degrees C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
Address 2018-01-25
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5186
Permanent link to this record
 

 
Author Mansouri, M.; Destain, M.-F.
Title Predicting biomass and grain protein content using Bayesian methods Type Journal Article
Year 2015 Publication Stochastic Environmental Research and Risk Assessment Abbreviated Journal Stoch. Environ. Res. Risk Assess.
Volume 29 Issue 4 Pages 1167-1177
Keywords crop model; particle filter; prediction; ensemble kalman filter; parameter-estimation; particle filters; decision-support; state estimation; model; nitrogen; navigation; tracking; systems
Abstract This paper deals with the problem of predicting biomass and grain protein content using improved particle filtering (IPF) based on minimizing the Kullback-Leibler divergence. The performances of IPF are compared with those of the conventional particle filtering (PF) in two comparative studies. In the first one, we apply IPF and PF at a simple dynamic crop model with the aim to predict a single state variable, namely the winter wheat biomass, and to estimate several model parameters. In the second study, the proposed IPF and the PF are applied to a complex crop model (AZODYN) to predict a winter-wheat quality criterion, namely the grain protein content. The results of both comparative studies reveal that the IPF method provides a better estimation accuracy than the PF method. The benefit of the IPF method lies in its ability to provide accuracy related advantages over the PF method since, unlike the PF which depends on the choice of the sampling distribution used to estimate the posterior distribution, the IPF yields an optimum choice of this sampling distribution, which also utilizes the observed data. The performance of the proposed method is evaluated in terms of estimation accuracy, root mean square error, mean absolute error and execution times.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3240 1436-3259 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM Approved no
Call Number MA @ admin @ Serial 4664
Permanent link to this record
 

 
Author Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title A comparison of within-season yield prediction algorithms based on crop model behaviour analysis Type Journal Article
Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 204 Issue Pages 10-21
Keywords stics crop model; climate variability; lars-wg; yield prediction; log-normal distribution; convergence in law theorem; central limit theorem; weather generator; nitrogen balances; generic model; wheat; simulation; climate; stics; variability; skewness; efficiency
Abstract The development of methodologies for predicting crop yield, in real-time and in response to different agro-climatic conditions, could help to improve the farm management decision process by providing an analysis of expected yields in relation to the costs of investment in particular practices. Based on the use of crop models, this paper compares the ability of two methodologies to predict wheat yield (Triticum aestivum L.), one based on stochastically generated climatic data and the other on mean climate data. It was shown that the numerical experimental yield distribution could be considered as a log-normal distribution. This function is representative of the overall model behaviour. The lack of statistical differences between the numerical realisations and the logistic curve showed in turn that the Generalised Central Limit Theorem (GCLT) was applicable to our case study. In addition, the predictions obtained using both climatic inputs were found to be similar at the inter and intra-annual time-steps, with the root mean square and normalised deviation values below an acceptable level of 10% in 90% of the climatic situations. The predictive observed lead-times were also similar for both approaches. Given (i) the mathematical formulation of crop models, (ii) the applicability of the CLT and GLTC to the climatic inputs and model outputs, respectively, and (iii) the equivalence of the predictive abilities, it could be concluded that the two methodologies were equally valid in terms of yield prediction. These observations indicated that the Convergence in Law Theorem was applicable in this case study. For purely predictive purposes, the findings favoured an algorithm based on a mean climate approach, which needed far less time (by 300-fold) to run and converge on same predictive lead time than the stochastic approach. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM Approved no
Call Number MA @ admin @ Serial 4647
Permanent link to this record
 

 
Author Dumont, B.; Leemans, V.; Ferrandis, S.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title Assessing the potential of an algorithm based on mean climatic data to predict wheat yield Type Journal Article
Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.
Volume 15 Issue 3 Pages 255-272
Keywords stics model; yield prediction; real-time; proxy-sensing; stochastic weather generator; crop yield; mediterranean environment; simulation-model; variability; nitrogen; ensembles; forecasts; demeter; europe
Abstract The real-time non-invasive determination of crop biomass and yield prediction is one of the major challenges in agriculture. An interesting approach lies in using process-based crop yield models in combination with real-time monitoring of the input climatic data of these models, but unknown future weather remains the main obstacle to reliable yield prediction. Since accurate weather forecasts can be made only a short time in advance, much information can be derived from analyzing past weather data. This paper presents a methodology that addresses the problem of unknown future weather by using a daily mean climatic database, based exclusively on available past measurements. It involves building climate matrix ensembles, combining different time ranges of projected mean climate data and real measured weather data originating from the historical database or from real-time measurements performed in the field. Used as an input for the STICS crop model, the datasets thus computed were used to perform statistical within-season biomass and yield prediction. This work demonstrated that a reliable predictive delay of 3-4 weeks could be obtained. In combination with a local micrometeorological station that monitors climate data in real-time, the approach also enabled us to (i) predict potential yield at the local level, (ii) detect stress occurrence and (iii) quantify yield loss (or gain) drawing on real monitored climatic conditions of the previous few days.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-2256 1573-1618 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM Approved no
Call Number MA @ admin @ Serial 4621
Permanent link to this record
 

 
Author Dumont, B.; Leemans, V.; Mansouri, M.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title Parameter identification of the STICS crop model, using an accelerated formal MCMC approach Type Journal Article
Year 2014 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 52 Issue Pages 121-135
Keywords crop model; parameter estimation; bayes; stics; dream; global sensitivity-analysis; simulation-model; nitrogen balances; bayesian-approach; generic model; wheat; prediction; water; optimization; algorithm
Abstract This study presents a Bayesian approach for the parameters’ identification of the STICS crop model based on the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm. The posterior distributions of nine specific crop parameters of the STICS model were sampled with the aim to improve the growth simulations of a winter wheat (Triticum aestivum L) culture. The results obtained with the DREAM algorithm were initially compared to those obtained with a Nelder-Mead Simplex algorithm embedded within the OptimiSTICS package. Then, three types of likelihood functions implemented within the DREAM algorithm were compared, namely the standard least square, the weighted least square, and a transformed likelihood function that makes explicit use of the coefficient of variation (CV). The results showed that the proposed CV likelihood function allowed taking into account both noise on measurements and heteroscedasticity which are regularly encountered in crop modelling. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM Approved no
Call Number MA @ admin @ Serial 4520
Permanent link to this record