|   | 
Details
   web
Records
Author Nendel, C.; Wieland, R.; Mirschel, W.; Specka, X.; Guddat, C.; Kersebaum, K.C.
Title Simulating regional winter wheat yields using input data of different spatial resolution Type Journal Article
Year 2013 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 145 Issue Pages 67-77
Keywords monica; agro-ecosystem model; dynamic modelling; scaling; input data; climate-change; crop yield; nitrogen dynamics; food security; mineral nitrogen; soil-moisture; scaling-up; model; maize; water
Abstract The success of using agro-ecosystem models for the high-resolution simulation of agricultural yields for larger areas is often hampered by a lack of input data. We investigated the effect of different spatially resolved soil and weather data used as input for the MONICA model on its ability to reproduce winter wheat yields in the Federal State of Thuringia, Germany (16,172 km(2)). The combination of one representative soil and one weather station was insufficient to reproduce the observed mean yield of 6.66 +/- 0.87 t ha(-1) for the federal state. Use of a 100 m x 100 m grid of soil and relief information combined with just one representative weather station yielded a good estimator (7.01 +/- 1.47 t ha(-1)). The soil and relief data grid used in combination with weather information from 14 weather stations in a nearest neighbour approach produced even better results (6.60 +/- 1.37 t ha(-1)); the same grid used with 39 additional rain gauges and an interpolation algorithm that included an altitude correction of temperature data slightly overpredicted the observed mean (7.36 +/- 1.17 t ha(-1)). It was concluded that the apparent success of the first two high-resolution approaches over the latter was based on two effects that cancelled each other out: the calibration of MONICA to match high-yield experimental data and the growth-defining and -limiting effect of weather data that is not representative for large parts of the region. At the county and farm level the MONICA model failed to reproduce the 1992-2010 time series of yields, which is partly explained by the fact that many growth-reducing factors were not considered in the model. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4498
Permanent link to this record
 

 
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P.
Title Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems Type Journal Article
Year 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 117 Issue Pages 1-12
Keywords changed climate variability; dsp; epic; adaptation; water management; irrigation; simulating impacts; co2 concentration; crop production; productivity; maize; yield; growth; model; photosynthesis; agriculture
Abstract Short-term perspectives appear to be relevant in formulating adaptation measures to changed climate variability (CCV) as a part of the European Rural Development Policy (RDP). Indeed, short-run CCV is the variation that farmers would perceive to such an extent that a political demand would be generated for adapting support measures. This study evaluates some relevant agronomic and economic impacts of CCV as modelled in a near future time period at the catchment scale in a rural district in Sardinia (Italy). The effects of CCV are assessed in relation to the availability of irrigation water and the irrigation needs of maize. The Environmental Policy Integrated Climate (EPIC) model was used to simulate the impact of key climatic variables on the irrigation water requirements and yields of maize. A three-stage discrete stochastic programming model was then applied to simulate management and economic responses to those changes. The overall economic impact of a simulated CCV was found to be primarily caused by reduced stability in the future supply of irrigation water. Adaptations to this instability will most likely lead to a higher level of groundwater extraction and a reduction in the demand for labour. Changed climate variability will most likely reduce the income potential of small-scale farming. The most CCV-vulnerable farm typologies were identified, and the implications were discussed in relation to the development of adaptation measures within the context of the Common Agricultural Policy of European Union. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4489
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Wang, M.; Kersebaum, K.-C.; Chen, H.; Baby, S.; Öztürk, I.; Chen, F.
Title Adapting maize production to drought in the Northeast Farming Region of China Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 77 Issue Pages 47-58
Keywords Drought; Maize production; Adaptation strategies; Household characteristics; Policy support; The Northeast Farming Region of China; climate change; Jilin province; water-stress; sowing date; yield; risk; tolerance; impacts; corn; agriculture
Abstract Maize (Zea mays L.) is the most prominent crop in the Northeast Farming Region of China (NFR), and drought has been the largest limitation for maize production in this area during recent decades. The question of how to adapt maize production to drought has received great attention from policy makers, researchers and farmers. In order to evaluate the effects of adaptation strategies against drought and examine the influences of policy supports and farmer households’ characteristics on adopting decisions, a large scale household survey was conducted in five representative maize production counties across NFR. Our survey results indicated that using variety diversification, drought resistant varieties and dibbling irrigation are the three major adaptation strategies against drought in spring, and farmers also adopted changes in sowing time, conservation tillage and mulching to cope with drought in spring. About 20% and 18% of households enhanced irrigation against drought in summer and autumn, respectively. Deep loosening tillage and organic fertilizer are also options for farmers to resist drought in summer. Maize yield was highly dependent on soil qualities, with yields on land of high soil quality approximately 1050 kg/ha and 2400 kg/ha higher than for normal and poor soil conditions, respectively. Using variety diversification and drought resistant varieties can respectively increase maize yield by approximately 150 and 220 kg/ha under drought. Conservation tillage increased maize yield by 438–459 kg/ha in drought years. Irrigation improved maize yield by 419–435 kg/ha and 444–463 kg/ha against drought in summer and autumn, respectively. Offering information service, financial and technical support can greatly increase the use of adaptation strategies for farmers to cope with drought. However, only 46% of households received information service, 43% of households received financial support, and 26% of households received technical support against drought from the local government. The maize acreage and the irrigation access are the major factors that influenced farmers’ decisions to apply adaptation strategies to cope with drought in each season, but only 25% of households have access to irrigation. This indicates the need for enhanced public support for farmers to better cope with drought in maize production, particularly through improving access to irrigation.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4825
Permanent link to this record
 

 
Author Van Oijen, M.; Höglind, M.
Title Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design Type Journal Article
Year 2016 Publication Euphytica Abbreviated Journal Euphytica
Volume 207 Issue 3 Pages 627-643
Keywords BASGRA; cold tolerance; genotype-environment interaction; plant breeding; process-based modelling; yield stability; grassland productivity; timothy regrowth; climate-change; water-deficit; forest models; late blight; leaf-area; calibration; growth; tolerance
Abstract Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-2336 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4820
Permanent link to this record
 

 
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P.; Shi, W.; Xiao, D.; Liu, Y.; Wang, M.; Liu, F.; Zhang, H.
Title Historical data provide new insights into response and adaptation of maize production systems to climate change/variability in China Type Journal Article
Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 185 Issue Pages 1-11
Keywords china; climate variability; grain yield; impact; maize; northeast china; tropical maize; wheat yields; heat-stress; crop yields; temperature; impacts; sensitivities; hybrids; trends
Abstract Extensive studies had been conducted to investigate the impacts of climate change on maize growth and yield in recent decades; however, the dynamics of crop husbandry in response and adaptation to climate change were not taken into account. Based on field observations spanning from 1981 to 2009 at 167 agricultural meteorological stations across China, we found that solar radiation and temperature over the observed maize growth period had decreasing trends during 1981-2009, and maize yields were positively correlated with these climate variables in major production regions. The decreasing trends in solar radiation and temperature during maize growth period were mainly ascribed to the adoption of late maturity cultivars with longer reproductive growth period (RGP). The adoption of late maturing cultivars with longer RGP contributed substantially to grain yield increase during the last three decades. The climate trends during maize growth period varied among different production areas. During 1981-2009, decreases in mean temperature, precipitation and solar radiation over maize growth period jointly reduced yield most by 13.2-17.3% in southwestern China, by contrast in northwestern China increases in mean temperature, precipitation and solar radiation jointly increased yield most by 12.9-14.4%. Our findings highlight that the adaptations of maize production system to climate change through shifts of sowing date and genotypes are underway and should be taken into accounted when evaluating climate change impacts. (C) 2015 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4816
Permanent link to this record