toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bannink, A.; van Lingen, H.J.; Ellis, J.L.; France, J.; Dijkstra, J. doi  openurl
  Title The contribution of mathematical modeling to understanding dynamic aspects of rumen metabolism Type Journal Article
  Year 2016 Publication Frontiers in Microbiology Abbreviated Journal Frontiers in Microbiology  
  Volume 7 Issue Pages 1820  
  Keywords lactating dairy-cows; milk urea concentration; fatty-acid production; ruminal fermentation; mechanistic model; holstein cows; beef-cattle; stoichiometric parameters; methane production; feeding frequency  
  Abstract All mechanistic rumen models cover the main drivers of variation in rumen function, which are feed intake, the differences between feedstuffs and feeds in their intrinsic rumen degradation characteristics, and fractional outflow rate of fluid and particulate matter. Dynamic modeling approaches are best suited to the prediction of more nuanced responses in rumen metabolism, and represent the dynamics of the interactions between substrates and micro-organisms and inter-microbial interactions. The concepts of dynamics are discussed for the case of rumen starch digestion as influenced by starch intake rate and frequency of feed intake, and for the case of fermentation of fiber in the large intestine. Adding representations of new functional classes of micro-organisms (i.e., with new characteristics from the perspective of whole rumen function) in rumen models only delivers new insights if complemented by the dynamics of their interactions with other functional classes. Rumen fermentation conditions have to be represented due to their profound impact on the dynamics of substrate degradation and microbial metabolism. Although the importance of rumen pH is generally acknowledged, more emphasis is needed on predicting its variation as well as variation in the processes that underlie rumen fluid dynamics. The rumen wall has an important role in adapting to rapid changes in the rumen environment, clearing of volatile fatty acids (VFA), and maintaining rumen pH within limits. Dynamics of rumen wall epithelia and their role in VFA absorption needs to be better represented in models that aim to predict rumen responses across nutritional or physiological states. For a detailed prediction of rumen N balance there is merit in a dynamic modeling approach compared to the static approaches adopted in current protein evaluation systems. Improvement is needed on previous attempts to predict rumen VFA profiles, and this should be pursued by introducing factors that relate more to microbial metabolism. For rumen model construction, data on rumen microbiomes are preferably coupled with knowledge consolidated in rumen models instead of relying on correlations with rather general aspects of treatment or animal. This helps to prevent the disregard of basic principles and underlying mechanisms of whole rumen function.  
  Address 2017-01-06  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-302x ISBN Medium  
  Area Expedition Conference  
  Notes (down) LiveM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4932  
Permanent link to this record
 

 
Author Özkan, Ş.; Vitali, A.; Lacetera, N.; Amon, B.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; de Haas, Y.; Dufrasne, I.; Elliott, J.; Eory, V.; Fox, N.J.; Garnsworthy, P.C.; Gengler, N.; Hammami, H.; Kyriazakis, I.; Leclère, D.; Lessire, F.; Macleod, M.; Robinson, T.P.; Ruete, A.; Sandars, D.L.; Shrestha, S.; Stott, A.W.; Twardy, S.; Vanrobays, M.L.; Ahmadi, B.V.; Weindl, I.; Wheelhouse, N.; Williams, A.G.; Williams, H.W.; Wilson, A.J.; Østergaard, S.; Kipling, R.P. doi  openurl
  Title Challenges and priorities for modelling livestock health and pathogens in the context of climate change Type Journal Article
  Year 2016 Publication Environmental Research Abbreviated Journal Environ. Res.  
  Volume 151 Issue Pages 130-144  
  Keywords  
  Abstract Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available. To identify such challenges and priorities, researchers from across Europe were engaged in a horizon-scanning study, involving workshop and questionnaire based exercises and focussed literature reviews. Eighteen key challenges were identified and grouped into six categories based on subject-specific and capacity building requirements. Across a number of challenges, the need for inventories relating model types to different applications (e.g. the pathogen species, region, scale of focus and purpose to which they can be applied) was identified, in order to identify gaps in capability in relation to the impacts of climate change on animal health. The need for collaboration and learning across disciplines was highlighted in several challenges, e.g. to better understand and model complex ecological interactions between pathogens, vectors, wildlife hosts and livestock in the context of climate change. Collaboration between socio-economic and biophysical disciplines was seen as important for better engagement with stakeholders and for improved modelling of the costs and benefits of poor livestock health. The need for more comprehensive validation of empirical relationships, for harmonising terminology and measurements, and for building capacity for under-researched nations, systems and health problems indicated the importance of joined up approaches across nations. The challenges and priorities identified can help focus the development of modelling capacity and future research structures in this vital field. Well-funded networks capable of managing the long-term development of shared resources are required in order to create a cohesive modelling community equipped to tackle the complex challenges of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) LiveM Approved no  
  Call Number MA @ admin @ Serial 4766  
Permanent link to this record
 

 
Author Gabaldón-Leal, C.; Webber, H.; Otegui, M.E.; Slafer, G.A.; Ordonez, R.A.; Gaiser, T.; Lorite, I.J.; Ruiz-Ramos, M.; Ewert, F. doi  openurl
  Title Modelling the impact of heat stress on maize yield formation Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 198 Issue Pages 226-237  
  Keywords Heat stress; Maize; Zea mays (L); Crop models; HIGH-TEMPERATURE STRESS; KERNEL NUMBER; CROP GROWTH; GRAIN-YIELD; SIMULATION; CLIMATE; HYBRIDS; SET; VALIDATION; COMPONENTS  
  Abstract The frequency and intensity of extreme high temperature events are expected to increase with climate change. Higher temperatures near anthesis have a large negative effect on maize (Zea mays, L.) grain yield. While crop growth models are commonly used to assess climate change impacts on maize and other crops, it is only recently that they have accounted for such heat stress effects, despite limited field data availability for model evaluation. There is also increasing awareness but limited testing of the importance of canopy temperature as compared to air temperature for heat stress impact simulations. In this study, four independent irrigated field trials with controlled heating imposed using polyethylene shelters were used to develop and evaluate a heat stress response function in the crop modeling framework SIMPLACE, in which the Lintul5 crop model was combined with a canopy temperature model. A dataset from Argentina with the temperate hybrid Nidera AX 842 MG (RM 119) was used to develop a yield reduction function based on accumulated hourly stress thermal time above a critical temperature of 34 degrees C. A second dataset from Spain with a FAO 700 cultivar was used to evaluate the model with daily weather inputs in two sets of simulations. The first was used to calibrate SIMPLACE for conditions with no heat stress, and the second was used to evaluate SIMPLACE under conditions of heat stress using the reduction factor obtained with the Argentine dataset. Both sets of simulations were conducted twice; with the heat stress function alternatively driven with air and simulated canopy temperature. Grain yield simulated under heat stress conditions improved when canopy temperature was used instead of air temperature (RMSE equal to 175 and 309 g m(-2), respectively). For the irrigated and high radiative conditions, raising the critical threshold temperature for heat stress to 39 degrees C improved yield simulation using air temperature (RMSE: 221 gm(-2)) without the need to simulate canopy temperature (RMSE: 175 gm(-2)). However, this approach of adjusting thresholds is only likely to work in environments where climatic variables and the level of soil water deficit are constant, such as irrigated conditions and are not appropriate for rainfed production conditions. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2016-11-17  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290, 1872-6852 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) ft_macsur, CropM Approved no  
  Call Number MA @ admin @ Serial 4880  
Permanent link to this record
 

 
Author Savary, S.; Jouanin, C.; Félix, I.; Gourdain, E.; Piraux, F.; Brun, F.; Willocquet, L. url  doi
openurl 
  Title Assessing plant health in a network of experiments on hardy winter wheat varieties in France: patterns of disease-climate associations Type Journal Article
  Year 2016 Publication European Journal of Plant Pathology Abbreviated Journal Eur. J. Plant Pathol.  
  Volume 146 Issue Pages 741-755  
  Keywords Puccinia triticina; Puccinia striiformis; Fusarium graminearum; Fusarium culmorum; Fusarium avenaceum; Blumeria graminis; Zymoseptoria tritici; Categorical data; Risk factor; Multiple pathosystem; Correspondence analysis; Logistic regression  
  Abstract A data set generated by a multi-year (2003–2010) and multi-site network of experiments on winter wheat varieties grown at different levels of crop management is analysed in order to assess the importance of climate on the variability of wheat health. Wheat health is represented by the multiple pathosystem involving five components: leaf rust, yellow rust, fusarium head blight, powdery mildew, and septoria tritici blotch. An overall framework of associations between multiple diseases and climate variables is developed. This framework involves disease levels in a binary form (i.e. epidemic vs. non-epidemic) and synthesis variables accounting for climate over spring and early summer. The multiple disease-climate pattern of associations of this framework conforms to disease-specific knowledge of climate effects on the components of the pathosystem. It also concurs with a (climate-based) risk factor approach to wheat diseases. This report emphasizes the value of large scale data in crop health assessment and the usefulness of a risk factor approach for both tactical and strategic decisions for crop health management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0929-1873 1573-8469 ISBN Medium  
  Area CropM Expedition Conference  
  Notes (down) CropMwp;wos; ftnot_macsur; Approved no  
  Call Number MA @ admin @ Serial 4755  
Permanent link to this record
 

 
Author Maiorano, A.; Martre, P.; Asseng, S.; Ewert, F.; Müller, C.; Rötter, R.P.; Ruane, A.C.; Semenov, M.A.; Wallach, D.; Wang, E.; Alderman, P.D.; Kassie, B.T.; Biernath, C.; Basso, B.; Cammarano, D.; Challinor, A.J.; Doltra, J.; Dumont, B.; Rezaei, E.E.; Gayler, S.; Kersebaum, K.C.; Kimball, B.A.; Koehler, A.-K.; Liu, B.; O’Leary, G.J.; Olesen, J.E.; Ottman, M.J.; Priesack, E.; Reynolds, M.; Stratonovitch, P.; Streck, T.; Thorburn, P.J.; Waha, K.; Wall, G.W.; White, J.W.; Zhao, Z.; Zhu, Y. doi  openurl
  Title Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 202 Issue Pages 5-20  
  Keywords Impact uncertainty; High temperature; Model improvement; Multi-model ensemble; Wheat crop model  
  Abstract To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMEs) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA Hot Serial Cereal experiment (calibration data set). Simulation results from before and after model improvement were then evaluated with independent field experiments from a CIMMYT world-wide field trial network (evaluation data set). Model improvements decreased the variation (10th to 90th model ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures >24 °C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME uncertainty range by 27% increased MME prediction skills by 47%. Results suggest that the mean level of variation observed in field experiments and used as a benchmark can be reached with half the number of models in the MME. Improving crop models is therefore important to increase the certainty of model-based impact assessments and allow more practical, i.e. smaller MMEs to be used effectively.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Language Summary Language Newsletter July 2016 Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area CropM Expedition Conference  
  Notes (down) CropMwp;wos; ft=macsur; wsnot_yet; Approved no  
  Call Number MA @ admin @ Serial 4776  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: