|   | 
Details
   web
Records
Author Ruiz-Ramos, M.; Ferrise, R.; Rodríguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J.G.; Jurecka, F.; Kersebaum, H.-C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter, R.P.
Title Applying adaptation response surfaces for managing wheat under perturbed climate and elevated CO2 in a Mediterranean environment Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume Issue Pages C4.4-D
Keywords
Abstract This study developed Adaptation Response Surfaces and applied them to a study case in North East Spain on winter crops adaptation, using rainfed winter wheat as reference crop.  Crop responses to perturbed temperature, precipitation and CO2 were simulated by an ensemble of crop models. A set of combined changes on cultivars (on vernalisation requirements and phenology) and management (on sowing date and irrigation) were considered as adaptation options and simulated by the crop model ensemble. The discussion focused on two main issues: 1) the recommended adaptation options for different soil types and perturbation levels, and 2) the need of applying our current knowledge (AOCK) when building a crop model ensemble. The study has been published Agricultural Systems (Available online 25 January 2017, https://doi.org/10.1016/j.agsy.2017.01.009 ), and the  text below consists on extracts from that paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) CropM Approved no
Call Number MA @ admin @ Serial 4955
Permanent link to this record
 

 
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.-C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinsky, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P.
Title Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C4.3-D1
Keywords
Abstract Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (−2 to +9°C) and precipitation (−50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.   The model ensemble was used to simulate yields of winter and spring wheat at sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.   The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes, Figure 1) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.   Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.   Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.   The full manuscript of this study is currently under revision (Fronzek et al. 2017).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) CropM Approved no
Call Number MA @ admin @ Serial 4956
Permanent link to this record
 

 
Author Liu, B.; Asseng, S.; Müller, C.; Ewert, F.; Elliott, J.; Lobell, D. B.; Martre, P.; Ruane, A. C.; Wallach, D.; Jones, J. W.; Rosenzweig, C.; Aggarwal, P. K.; Alderman, P. D.; Anothai, J.; Basso, B.; Biernath, C.; Cammarano, D.; Challinor, A.; Deryng, D.; Sanctis, G. D.; Doltra, J.; Fereres, E.; Folberth, C.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L. A.; Izaurralde, R. C.; Jabloun, M.; Jones, C. D.; Kersebaum, K. C.; Kimball, B. A.; Koehler, A.-K.; Kumar, S. N.; Nendel, C.; O’Leary, G. J.; Olesen, J. E.; Ottman, M. J.; Palosuo, T.; Prasad, P. V. V.; Priesack, E.; Pugh, T. A. M.; Reynolds, M.; Rezaei, E. E.; Rötter, R. P.; Schmid, E.; Semenov, M. A.; Shcherbak, I.; Stehfest, E.; Stöckle, C. O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.; Waha, K.; Wall, G. W.; Wang, E.; White, J. W.; Wolf, J.; Zhao, Z.; Zhu, Y.
Title Similar estimates of temperature impacts on global wheat yield by three independent methods Type Journal Article
Year 2016 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 6 Issue 12 Pages 1130-1136
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x ISBN Medium article
Area Expedition Conference
Notes (up) CropM Approved no
Call Number MA @ admin @ Serial 4965
Permanent link to this record
 

 
Author Boote, K.J.; Porter, C.; Jones, J.W.; Thorburn, P.J.; Kersebaum, K.C.; Hoogenboom, G.; White, J.W.; Hatfield, J.L.
Title Sentinel site data for crop model improvement—definition and characterization Type Book Chapter
Year 2016 Publication Improving Modeling Tools to Assess Climate Change Effects on Crop Response Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Crop models are increasingly being used to assess the impacts of future climate change on production and food security. High quality, site-specific data on weather, soils, management, and cultivar are needed for those model applications. Also important is that model development, evaluation, improvement, and calibration require additional high quality, site-specific measurements on crop yield, growth, phenology, and ancillary traits. We review the evolution of minimum data set requirements for agroecosystem modeling and then describe the characteristics and ranking of sentinel site data needed for crop model improvement, calibration, and application. We in the Agricultural Model Intercomparison and Improvement Project (AgMIP), propose to rank sentinel site data sets as platinum, gold, silver, and copper, based on the degree of true site-specific measurement of weather, soils, management, crop yield, as well as the quality, comprehensiveness, quantity, accuracy, and value. For example, to be ranked platinum, the weather and soil characterization must be measured on-site, and all management inputs must be known. Dataset ranking will be lower for weather measured off-site or soil traits estimated from soil mapping. Ranking also depends on the intended purposes for data use. If the purpose is to improve a crop model for response to water or N, then additional observations are necessary, such as initial soil water, initial soil inorganic N, and plant N uptake during the growing season to be ranked platinum. Rankings are enhanced by presence of multiple treatments and sites. Examples of platinum-, gold-, and silver-quality data sets for model improvement and calibration uses are illustrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Hatfield, J.L.; Fleisher, D.
Language Summary Language Original Title
Series Editor Series Title Advances in Agricultural Systems Modeling Abbreviated Series Title
Series Volume 7 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) CropM Approved no
Call Number MA @ admin @ Serial 4980
Permanent link to this record
 

 
Author Montesino-San Martin, M.; Wallach, D.; Olesen, J.E.; Porter, J.R.
Title Quantifying data requirements in crop models; applying the learning curve approach to winter wheat phenology models Type Manuscript
Year Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) CropM Approved no
Call Number MA @ admin @ Serial 5023
Permanent link to this record