|   | 
Details
   web
Records
Author Semenov, M.A.; Stratonovitch, P.
Title Adapting wheat ideotypes for climate change: accounting for uncertainties in CMIP5 climate projections Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 123-139
Keywords sirius wheat model; lars-wg weather generator; downscaling; cmip5 ensemble; impact assessment; stochastic weather generators; earth system model; diverse canadian climates; high-temperature stress; change scenarios; lars-wg; decadal prediction; yield progress; heat-stress; aafc-wg
Abstract This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for the downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were integrated with LARS-WG. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM x RCP, a climate sensitivity index could be used to select a subset of GCMs which preserves the range of uncertainty found in CMIP5. This would allow us to quantify uncertainty in predictions of impacts resulting fromthe CMIP5 ensemble by conducting fewer simulation experiments. In a case study, we describe the use of the Sirius wheat simulation model to design in silico wheat ideotypes that are optimised for future climates in Europe, sampling uncertainty in GCMs, emission scenarios, time periods and European locations with contrasting climates. Two contrasting GCMs were selected for the analysis, ‘hot’ HadGEM2-ES and ‘cool’ GISS-E2-R-CC. Despite large uncertainty in future climate projections, we were able to identify target traits for wheat improvement which may assist breeding for high-yielding wheat cultivars with increased yield stability.
Address 2015-10-12
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4701
Permanent link to this record
 

 
Author Ferrise, R.; Toscano, P.; Pasqui, M.; Moriondo, M.; Primicerio, J.; Semenov, M.A.; Bindi, M.
Title Monthly-to-seasonal predictions of durum wheat yield over the Mediterranean Basin Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 7-21
Keywords yield predictions; seasonal forecasts; analogue forecasts; stochastic weather generator; empirical forecasting models; durum wheat; crop modelling; mediterranean basin; general-circulation model; scale climate indexes; crop yield; grain-yield; forecasts; simulation; region; precipitation; australia; europe
Abstract Uncertainty in weather conditions for the forthcoming growing season influences farmers’ decisions, based on their experience of the past climate, regarding the reduction of agricultural risk. Early within-season predictions of grain yield can represent a great opportunity for farmers to improve their management decisions and potentially increase yield and reduce potential risk. This study assessed 3 methods of within-season predictions of durum wheat yield at 10 sites across the Mediterranean Basin. To assess the value of within-season predictions, the model SiriusQuality2 was used to calculate wheat yields over a 9 yr period. Initially, the model was run with observed daily weather to obtain the reference yields. Then, yield predictions were calculated at a monthly time step, starting from 6 mo before harvest, by feeding the model with observed weather from the beginning of the growing season until a specific date and then with synthetic weather constructed using the 3 methods, historical, analogue or empirical, until the end of the growing season. The results showed that it is possible to predict durum wheat yield over the Mediterranean Basin with an accuracy of normalized root means squared error of <20%, from 5 to 6 mo earlier for the historical and empirical methods and 3 mo earlier for the analogue method. Overall, the historical method performed better than the others. Nonetheless, the analogue and empirical methods provided better estimations for low-yielding and high-yielding years, thus indicating great potential to provide more accurate predictions for years that deviate from average conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4696
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Wang, E.; Nendel, C.; Kersebaum, K.C.; Haas, E.; Kiese, R.; Klatt, S.; Eckersten, H.; Vanuytrecht, E.; Kuhnert, M.; Lewan, E.; Rötter, R.; Roggero, P.P.; Wallach, D.; Cammarano, D.; Asseng, S.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F.
Title Variability of effects of spatial climate data aggregation on regional yield simulation by crop models Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 53-69
Keywords spatial aggregation effects; crop simulation model; input data; scaling; variability; yield simulation; model comparison; input data aggregation; systems simulation; nitrogen dynamics; data resolution; n2o emissions; winter-wheat; scale; water; impact; apsim
Abstract Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield estimates from large-scale simulations may be biased, compared to simulations with high-resolution input data. We evaluated this so-called aggregation effect for 13 crop models for the region of North Rhine-Westphalia in Germany. The models were supplied with climate data of 1 km resolution and spatial aggregates of up to 100 km resolution raster. The models were used with 2 crops (winter wheat and silage maize) and 3 production situations (potential, water-limited and nitrogen-water-limited growth) to improve the understanding of errors in model simulations related to data aggregation and possible interactions with the model structure. The most important climate variables identified in determining the model-specific input data aggregation on simulated yields were mainly related to changes in radiation (wheat) and temperature (maize). Additionally, aggregation effects were systematic, regardless of the extent of the effect. Climate input data aggregation changed the mean simulated regional yield by up to 0.2 t ha(-1), whereas simulated yields from single years and models differed considerably, depending on the data aggregation. This implies that large-scale crop yield simulations are robust against climate data aggregation. However, large-scale simulations can be systematically biased when being evaluated at higher temporal or spatial resolution depending on the model and its parameterization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4694
Permanent link to this record
 

 
Author Zhang, W.; Liu, C.; Zheng, X.; Zhou, Z.; Cui, F.; Zhu, B.; Haas, E.; Klatt, S.; Butterbach-Bahl, K.; Kiese, R.
Title Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system Type Journal Article
Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 140 Issue Pages 1-10
Keywords Model ensemble; Straw incorporation; Irrigation; Fertilization; Calcareous soil; North China Plain; process-oriented model; soil organic-matter; biogeochemical model; cropping system; N2O emissions; forest soils; microbial-growth; rainfall events; calcareous soil
Abstract The DNDC, LandscapeDNDC and IAP-N-GAS models have been designed to simulate the carbon and nitrogen processes of terrestrial ecosystems. Until now, a comparison of these models using simultaneous observations has not been reported, although such a comparison is essential for further model development and application. This study aimed to evaluate the performance of the models, delineate the strengths and limitations of each model for simulating soil nitrous oxide (N2O) and nitric oxide (NO) emissions, and explore short-comings of these models that may require reconsideration. We conducted comparisons among the models using simultaneous observations of both gases and relevant variables from the winter wheat-summer maize rotation system at three field sites with calcareous soils. Simulations of N2O and NO emissions by the three models agreed well with annual observations, but not with daily observations. All models failed to correctly simulate soil moisture, which could explain some of the incorrect daily fluxes of N2O and NO, especially for intensive fluxes during the growing season. Multi-model ensembles are promising approaches to better simulate daily gas emissions. IAP-N-GAS underestimated the priming effect of straw incorporation on N2O and NO emissions, but better results were obtained with DNDC95 and LandscapeDNDC. LandscapeDNDC and IAP-N-GAS need to improve the simulation of irrigation water allocation and residue decomposition processes, respectively, and together to distinguish different irrigation methods as DNDC95 does. All three models overestimated the emissions of the nitrogenous gases for high nitrogen fertilizer (>430 kg N ha(-1) yr(-1)) addition treatments, and therefore, future research should focus more on the simulation of the limitation of soil dissolvable organic carbon on denitrification in calcareous soils.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4685
Permanent link to this record
 

 
Author Kim, D.-G.; Thomas, A.D.; Pelster, D.; Rosenstock, T.S.; Sanz-Cobena, A.
Title Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further research Type Journal Article
Year 2016 Publication Biogeosciences Abbreviated Journal Biogeosciences
Volume 13 Issue 16 Pages 4789-4809
Keywords nitrous-oxide emissions; soil CO2 efflux; N2O emissions; carbon-dioxide; agroforestry residues; improved-fallow; disturbance gradient; fertilizer; nitrogen; sampling frequency; gaseous emissions
Abstract This paper summarizes currently available data on greenhouse gas (GHG) emissions from African natural ecosystems and agricultural lands. The available data are used to synthesize current understanding of the drivers of change in GHG emissions, outline the knowledge gaps, and suggest future directions and strategies for GHG emission research. GHG emission data were collected from 75 studies conducted in 22 countries (n = 244) in sub-Saharan Africa (SSA). Carbon dioxide (CO2) emissions were by far the largest contributor to GHG emissions and global warming potential (GWP) in SSA natural terrestrial systems. CO2 emissions ranged from 3.3 to 57.0 Mg CO2 ha(-1) yr(-1), methane (CH4) emissions ranged from -4.8 to 3.5 kg ha(-1) yr(-1) (-0.16 to 0.12 Mg CO2 equivalent (eq.) ha(-1) yr(-1)), and nitrous oxide (N2O) emissions ranged from -0.1 to 13.7 kg ha(-1) yr(-1) (-0.03 to 4.1 Mg CO2 eq. ha(-1) yr(-1)). Soil physical and chemical properties, rewetting, vegetation type, forest management, and land-use changes were all found to be important factors affecting soil GHG emissions from natural terrestrial systems. In aquatic systems, CO2 was the largest contributor to total GHG emissions, ranging from 5.7 to 232.0 Mg CO2 ha(-1) yr(-1), followed by -26.3 to 2741.9 kgCH(4) ha(-1) yr(-1) (-0.89 to 93.2 Mg CO2 eq. ha(-1) yr(-1)) and 0.2 to 3.5 kg N2O ha(-1) yr(-1) (0.06 to 1.0 Mg CO2 eq. ha(-1) yr(-1)). Rates of all GHG emissions from aquatic systems were affected by type, location, hydrological characteristics, and water quality. In croplands, soil GHG emissions were also dominated by CO2, ranging from 1.7 to 141.2 Mg CO2 ha(-1) yr(-1), with -1.3 to 66.7 kgCH(4) ha(-1) yr(-1) (-0.04 to 2.3 Mg CO2 eq. ha(-1) yr(-1)) and 0.05 to 112.0 kg N2O ha(-1) yr(-1) (0.015 to 33.4 Mg CO2 eq. ha(-1) yr(-1)). N2O emission factors (EFs) ranged from 0.01 to 4.1 %. Incorporation of crop residues or manure with inorganic fertilizers invariably resulted in significant changes in GHG emissions, but results were inconsistent as the magnitude and direction of changes were differed by gas. Soil GHG emissions from vegetable gardens ranged from 73.3 to 132.0 Mg CO2 ha(-1) yr(-1) and 53.4 to 177.6 kg N2O ha(-1) yr(-1) (15.9 to 52.9 Mg CO2 eq. ha(-1) yr(-1)) and N2O EFs ranged from 3 to 4 %. Soil CO2 and N2O emissions from agroforestry were 38.6 Mg CO2 ha(-1) yr(-1) and 0.2 to 26.7 kg N2O ha(-1) yr(-1) (0.06 to 8.0 Mg CO2 eq. ha(-1) yr(-1)), respectively. Improving fallow with nitrogen (N)-fixing trees led to increased CO2 and N2O emissions compared to conventional croplands. The type and quality of plant residue in the fallow is an important control on how CO2 and N2O emissions are affected. Throughout agricultural lands, N2O emissions slowly increased with N inputs below 150 kg N ha(-1) yr(-1) and increased exponentially with N application rates up to 300 kg N ha(-1) yr(-1). The lowest yield-scaled N2O emissions were reported with N application rates ranging between 100 and 150 kg N ha(-1). Overall, total CO2 eq. emissions from SSA natural ecosystems and agricultural lands were 56.9 +/- 12.7 x 10(9) Mg CO2 eq. yr(-1) with natural ecosystems and agricultural lands contributing 76.3 and 23.7 %, respectively. Additional GHG emission measurements are urgently required to reduce uncertainty on annual GHG emissions from the different land uses and identify major control factors and mitigation options for low-emission development. A common strategy for addressing this data gap may include identifying priorities for data acquisition, utilizing appropriate technologies, and involving international networks and collaboration.
Address 2016-10-18
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1726-4170 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4687
Permanent link to this record