|   | 
Details
   web
Records
Author Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E.
Title Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 62 Issue Pages 55-64
Keywords nitrogen; leaching; organic farming; wheat; barley; climate-change; catch crops; nitrogen mineralization; winter-wheat; arable crop; european agriculture; farming systems; spring barley; cover crops; soil
Abstract The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3-N) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction cups. The effects of climate, soil and management were examined in a linear mixed model, and only parameters with significant effect (P < 0.05) were included in the final model. The model explained 61% and 47% of the variation in the square root transform of flow-weighted annual NO3-N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3-N leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop management. There were significant effects on annual N concentration and NO3-N leaching of location, rotation, previous crop and crop cover during autumn and winter. The relative effects of temperature and precipitation differed between seasons and cropping systems. A sensitivity analysis revealed that the predicted N concentration and leaching increased with increases in temperature and precipitation. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4562
Permanent link to this record
 

 
Author Abdelrahman, H.M.; Olk, D.C.; Dinnes, D.; Ventrella, D.; Miano, T.; Cocozza, C.
Title Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions Type Journal Article
Year 2016 Publication Journal of Soils and Sediments Abbreviated Journal Journal of Soils and Sediments
Volume 16 Issue 10 Pages 2375-2384
Keywords Light fraction; Mobile humic acid; Organic farming; Particulate organic matter; SOM sequential extraction
Abstract Purpose The study aimed to describe the carbohydrates and amino compounds content in soil, the light fraction (LF), the >53 μm particulate organic matter (POM), and the mobile humic acid (MHA) fraction and to find out whether the carbohydrates and amino compounds can be used to explain the origin of SOM fractions. Materials and methods Soil samples were collected from two agricultural fields managed under organic farming in southern Italy. The LF, the POM, and the MHA were sequentially extracted from each soil sample then characterized. Seven neutral sugars and 19 amino compounds (amino acids and amino sugars) were determined in each soil sample and its correspondent fractions. Results and discussion The MHA contained less carbohydrate than the LF or the POM but its carbohydrates, although dominated by arabinose, were relatively with larger microbial contribution as revealed by the mannose/xylose ratio. The amino compounds were generally less in the LF or the POM than in the MHA, while the fungal (aspartic and serine) and bacterial (alanine and glycine) amino acids were larger in the MHA than in the LF or the POM, underlining the microbial contribution to the MHA. Results from both sites indicated that total carbohydrates content decreased moving from the LF (younger fraction) to the MHA (older fraction), which seems to follow a decomposition continuum of organic matter in the soil-plant system. Conclusions The study showed that the MHA is a labile humified fraction of soil C due to its content of carbohydrates and concluded that the content of carbohydrates and amino compounds in the LF, the POM and the MHA can depict the nature of these fractions and their cycling pattern and response to land management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-0108 ISBN Medium
Area Expedition Conference
Notes (down) CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4992
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Wang, M.; Kersebaum, K.-C.; Chen, H.; Baby, S.; Öztürk, I.; Chen, F.
Title Adapting maize production to drought in the Northeast Farming Region of China Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 77 Issue Pages 47-58
Keywords Drought; Maize production; Adaptation strategies; Household characteristics; Policy support; The Northeast Farming Region of China; climate change; Jilin province; water-stress; sowing date; yield; risk; tolerance; impacts; corn; agriculture
Abstract Maize (Zea mays L.) is the most prominent crop in the Northeast Farming Region of China (NFR), and drought has been the largest limitation for maize production in this area during recent decades. The question of how to adapt maize production to drought has received great attention from policy makers, researchers and farmers. In order to evaluate the effects of adaptation strategies against drought and examine the influences of policy supports and farmer households’ characteristics on adopting decisions, a large scale household survey was conducted in five representative maize production counties across NFR. Our survey results indicated that using variety diversification, drought resistant varieties and dibbling irrigation are the three major adaptation strategies against drought in spring, and farmers also adopted changes in sowing time, conservation tillage and mulching to cope with drought in spring. About 20% and 18% of households enhanced irrigation against drought in summer and autumn, respectively. Deep loosening tillage and organic fertilizer are also options for farmers to resist drought in summer. Maize yield was highly dependent on soil qualities, with yields on land of high soil quality approximately 1050 kg/ha and 2400 kg/ha higher than for normal and poor soil conditions, respectively. Using variety diversification and drought resistant varieties can respectively increase maize yield by approximately 150 and 220 kg/ha under drought. Conservation tillage increased maize yield by 438–459 kg/ha in drought years. Irrigation improved maize yield by 419–435 kg/ha and 444–463 kg/ha against drought in summer and autumn, respectively. Offering information service, financial and technical support can greatly increase the use of adaptation strategies for farmers to cope with drought. However, only 46% of households received information service, 43% of households received financial support, and 26% of households received technical support against drought from the local government. The maize acreage and the irrigation access are the major factors that influenced farmers’ decisions to apply adaptation strategies to cope with drought in each season, but only 25% of households have access to irrigation. This indicates the need for enhanced public support for farmers to better cope with drought in maize production, particularly through improving access to irrigation.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4825
Permanent link to this record
 

 
Author Ruane, A.C.; Hudson, N.I.; Asseng, S.; Camarrano, D.; Ewert, F.; Martre, P.; Boote, K.J.; Thorburn, P.J.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, &rew J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.F.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Kumar, S.N.; Müller, C.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Rötter, R.P.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Wolf, J.
Title Multi-wheat-model ensemble responses to interannual climate variability Type Journal Article
Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 81 Issue Pages 86-101
Keywords Crop modeling; Uncertainty; Multi-model ensemble; Wheat; AgMIP; Climate; impacts; Temperature; Precipitation; lnterannual variability; simulation-model; crop model; nitrogen dynamics; winter-wheat; large-area; systems simulation; farming systems; yield response; growth; water
Abstract We compare 27 wheat models’ yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981-2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models’ climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R-2 <= 0.24) was found between the models’ sensitivities to interannual temperature variability and their response to long-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts. Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4769
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Wang, M.; Öztürk, I.; Zhang, H.; Chen, F.
Title Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 78 Issue Pages 60-72
Keywords Climate change; Vulnerability; Impact; Adaptation; Cropping systems; The Northeast Farming Region of China; maize production; high-temperature; growth period; yield; rice; drought; management; nitrogen; crops; pests
Abstract The Northeast Farming Region of China (NFR) is a very important crop growing area, comprising seven sub-regions: Xing’anling (XA), Sanjiang (SJ), Northwest Songliao (NSL), Central Songliao (CSL), Southwest Songliao (SSL), Changbaishan (CB) and Liaodong (LD), which has been severely affected by extreme climate events and climatic change. Therefore, a set of expert survey has been done to identify current and project future climate limitations to crop production and explore appropriate adaptation measures in NFR. Droughts have been the largest limitation for maize (Zea mays L.) in NSL and SSL, and for soybean (Glycine max L Merr.) in SSL. Chilling damage has been the largest limitation for rice (Oryza sativa L) production in XA, SJ and CB. Projected climate change is expected to be beneficial for expanding the crop growing season, and to provide more suitable conditions for sowing and harvest. Autumn frost will occur later in most parts of NFR, and chilling damage will also decrease, particularly for rice production in XA and SJ. Drought and heat stress are expected to become more severe for maize and soybean production in most parts of NFR. Also, plant diseases, pests and weeds are considered to become more severe for crop production under climate change. Adaptation measures that have already been implemented in recent decades to cope with current climatic limitations include changes in timing of cultivation, variety choice, soil tillage practices, crop protection, irrigation and use of plastic film for soil cover. With the projected climate change and increasing risk of climatic extremes, additional adaptation measures will become relevant for sustaining and improving productivity of crops in NFR to ensure food security in China. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4772
Permanent link to this record