|   | 
Details
   web
Records
Author Ghaley, B.B.; Porter, J.R.
Title Determination of biomass accumulation in mixed belts of Salix, Corylus and Alnus species in combined food and energy production system Type Journal Article
Year 2014 Publication Biomass and Bioenergy Abbreviated Journal Biomass and Bioenergy
Volume 63 Issue Pages 86-91
Keywords allometric equation; destructive and non-destructive method; stool and biomass yield; bio-energy belts; food and fodder crops; short rotation woody crops; short-rotation forestry; willow; plantations; sweden; coppice; equations; growth; poplar; trees; yield
Abstract Given the energetic, demographic and the climatic challenges faced today, we designed a combined food and energy (CFE) production system integrating food, fodder and mixed belts of Salix, Alnus and Corylus sp. as bioenergy belts. The objective was to assess the shoot dry weight-stem diameter allometric relationship based on stem diameter at 10 (SD10) and 55 cm (SD55) from the shoot base in the mixed bioenergy belts. Allometric relations based on SD10 and SD55 explained 90-96% and 90-98% of the variation in shoot dry weights respectively with no differences between the destructive and the non-destructive methods. The individual stool yields varied widely among the species and within willow species with biomass yield range of 37.60-92.00 oven dry tons (ODT) ha (1) in 4-year growth cycle. The biomass yield of the bioenergy belt, predicted by allometric relations was 48.84 ODT ha 1 in 4-year growth cycle corresponding to 12.21 ODT ha (1) year (1). The relatively high biomass yield is attributed to the border effects and the ‘fertilizing effect’ of alder due to nitrogen fixation, benefitting other SWRC components. On termination of 4-year growth cycle, the bioenergy belts were harvested and the biomass yield recorded was 12.54 ODT ha (1) year (1), in close proximity to the biomass yield predicted by the allometric equations, lending confidence and robustness of the model for biomass yield determination in such integrated agro-ecosystem. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0961-9534 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM Approved no
Call Number MA @ admin @ Serial 4624
Permanent link to this record
 

 
Author Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Popp, A.; Müller, C.
Title Forecasting technological change in agriculture—An endogenous implementation in a global land use model Type Journal Article
Year 2014 Publication Technological Forecasting and Social Change Abbreviated Journal Technological Forecasting and Social Change
Volume 81 Issue Pages 236-249
Keywords Technological change; Land use; Agricultural productivity; Land use intensity; Research and development; land-use; research expenditures; productivity growth; impact; deforestation; forest; yield; Business & Economics; Public Administration
Abstract ► Endogenous technological change in an economic land use model ► Estimation of yield elasticity with respect to investments in technological change ► Projections of future agricultural productivity rates ► Validation with observed data and historic trends ► Trade-off between required technological change and forest protection objectives Technological change in agriculture plays a decisive role for meeting future demands for agricultural goods. However, up to now, agricultural sector models and models on land use change have used technological change as an exogenous input due to various information and data deficiencies. This paper provides a first attempt towards an endogenous implementation based on a measure of agricultural land use intensity. We relate this measure to empirical data on investments in technological change. Our estimated yield elasticity with respect to research investments is 0.29 and production costs per area increase linearly with an increasing yield level. Implemented in the global land use model MAgPIE (“Model of Agricultural Production and its Impact on the Environment”) this approach provides estimates of future yield growth. Highest future yield increases are required in Sub-Saharan Africa, the Middle East and South Asia. Our validation with FAO data for the period 1995–2005 indicates that the model behavior is in line with observations. By comparing two scenarios on forest conservation we show that protecting sensitive forest areas in the future is possible but requires substantial investments into technological change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-1625 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM Approved no
Call Number MA @ admin @ Serial 4518
Permanent link to this record
 

 
Author Dass, P.; Müller, C.; Brovkin, V.; Cramer, W.
Title Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes Type Journal Article
Year 2013 Publication Earth System Dynamics Abbreviated Journal Earth System Dynamics
Volume 4 Issue 2 Pages 409-424
Keywords land-use change; global vegetation model; soil carbon; climate-change; surface albedo; cover changes; snow cover; remind-r; forest; productivity
Abstract Numerous studies have concluded that deforestation of the high latitudes result in a global cooling. This is mainly because of the increased albedo of deforested land which dominates over other biogeophysical and biogeochemical mechanisms in the energy balance. This dominance, however, may be due to an underestimation of the biogeochemical response, as carbon emissions are typically at or below the lower end of estimates. Here, we use the dynamic global vegetation model LPJmL for a better estimate of the carbon cycle under such large-scale deforestation. These studies are purely theoretical in order to understand the role of vegetation in the energy balance and the earth system. They must not be mistaken as possible mitigation options, because of the devastating effects on pristine ecosystems. For realistic assumptions of land suitability, the total emissions computed in this study are higher than that of previous studies assessing the effects of boreal deforestation. The warming due to biogeochemical effects ranges from 0.12 to 0.32 degrees C, depending on the climate sensitivity. Using LPJmL to assess the mitigation potential of bioenergy plantations in the suitable areas of the deforested region, we find that the global biophysical bioenergy potential is 68.1 +/- 5.6 EJ yr(-1) of primary energy at the end of the 21st century in the most plausible scenario. The avoided combustion of fossil fuels over the time frame of this experiment would lead to further cooling. However, since the carbon debt caused by the cumulative emissions is not repaid by the end of the 21st century, the global temperatures would increase by 0.04 to 0.11 degrees C. The carbon dynamics in the high latitudes especially with respect to permafrost dynamics and long-term carbon losses, require additional attention in the role for the Earth’s carbon and energy budget.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4987 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM Approved no
Call Number MA @ admin @ Serial 4486
Permanent link to this record
 

 
Author Francone, C.; Katul, G.G.; Cassardo, C.; Richiardone, R.
Title Turbulent transport efficiency and the ejection-sweep motion for momentum and heat on sloping terrain covered with vineyards Type Journal Article
Year 2012 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 162-163 Issue Pages 98-107
Keywords coherent motion; cumulant expansions; heat and momentum transfer; sloping terrain; vineyards; planar fit method; boundary-layers; reynolds stress; dense canopies; plant canopies; flow; fluxes; forest; fields; hills
Abstract In boundary layer flows, it is now recognized that the net momentum and mass exchange rates are dominated by the statistical properties of ejecting and sweeping motion often linked to the presence of coherent turbulent structures. Over vineyards, three main factors impact the transport properties of such coherent motion: presence of sloping terrain, variations in leaf area index (LAI) during the growing season, and thermal stratification. The effect of these factors on momentum and heat transport is explored for three vineyard sites situated on different slopes. All three sites experience similar seasonal variation in LAI and mean wind conditions. The analysis is carried out using a conventional quadrant analysis technique and is tested against two models approximating the joint probability density function (JPDF) of the flow variables. It is demonstrated that a Gaussian JPDF explains much of the updraft and downdraft statistical contributions to heat and momentum transport efficiencies for all three sites. An incomplete or truncated third-order cumulant expansion method (ICEM) of the JPDF that retains only the mixed moments and ignores the skewness contributions describes well all the key properties of ejections and sweeps for all slopes, LAI, and stability classes. The implication of these findings for diagnosing potential failures of gradient-diffusion theory over complex terrain is discussed. Because only lower order moments are needed to describe the main characteristics of the JPDF, the use of the Moving Equilibrium Hypothesis (MEH) to predict these moments from the locally measured sensible heat flux and friction velocity is explored. Provided the planar fit coordinate transformation is applied to the data, the MEH can describe these statistical moments at all three sites regardless of terrain slopes and LAI values. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes (down) CropM Approved no
Call Number MA @ admin @ Serial 4471
Permanent link to this record