toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Quain, M.D.; Makgopa, M.E.; Marquez-Garcia, B.; Comadira, G.; Fernandez-Garcia, N.; Olmos, E.; Schnaubelt, D.; Kunert, K.J.; Foyer, C.H. doi  openurl
  Title Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits Type Journal Article
  Year 2014 Publication Plant Biotechnology Journal Abbreviated Journal Plant Biotechnol. J.  
  Volume 12 Issue 7 Pages 903-913  
  Keywords Arabidopsis/*genetics/metabolism/physiology; Carbon Dioxide/metabolism; Chlorophyll/metabolism; Cystatins/*genetics/metabolism/physiology; Droughts; Lactones/*metabolism; Oryza/genetics; Phenotype; Plant Proteins/*genetics/metabolism/physiology; Seeds/genetics/metabolism/physiology; Soybeans/*genetics/metabolism/physiology; Stress, Physiological/*genetics; cystatin; cysteine protease; drought tolerance; photosynthesis; seed protein and yield; strigolactone  
  Abstract Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1467-7644 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4740  
Permanent link to this record
 

 
Author Nguyen, T.P.L.; Seddaiu, G.; Virdis, S.G.P.; Tidore, C.; Pasqui, M.; Roggero, P.P. url  doi
openurl 
  Title Perceiving to learn or learning to perceive? Understanding farmers’ perceptions and adaptation to climate uncertainties Type Journal Article
  Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 143 Issue Pages 205-216  
  Keywords climate variability; socio-cognitive learning process; adaptation strategies; mediterranean agricultural systems; agricultural land-use; adaptive capacity; farming systems; variability; knowledge; risk; drought; africa; future; rain  
  Abstract Perception not only shapes knowledge but knowledge also shapes perception. Humans adapt to the natural world through a process of learning in which they interpret their sensory impressions in order to give meaning to their environment and act accordingly. In this research, we examined how farmers’ decision making is shaped in the context of changing climate. Using empirical data (face-to-face semi-structured interviews and questionnaires) on four Mediterranean farming systems from a case study located in Oristano (Sardinia, Italy) we sought to understand farmers’ perception of climate change and their behaviors in adjustment of farming practices. We found different perceptions among farmer groups were mainly associated with the different socio-cultural and institutional settings and perceived relationships between climate factors and impacts on each farming systems. The research findings on different perceptions among farmer groups can help to understand farmers’ current choices and attitudes of adaptation for supporting the development of appropriate adaptation strategies. In addition, the knowledge of socio-cultural and economic factors that lead to biases in climate perceptions can help to integrate climate communication into adaptation research for making sense of climate impacts and responses at farm level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4707  
Permanent link to this record
 

 
Author Tao, F.; Rötter, R.P.; Palosuo, T.; Höhn, J.; Peltonen-Sainio, P.; Rajala, A.; Salo, T. url  doi
openurl 
  Title Assessing climate effects on wheat yield and water use in Finland using a super-ensemble-based probabilistic approach Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 23-37  
  Keywords adaptation; drought; evapotranspiration; heat stress; risk; uncertainties; northern agriculture; model; weather; variability; precipitation; uncertainty; adaptation; simulation; dynamics; impacts  
  Abstract We adapted a large area crop model, MCWLA-Wheat, to winter wheat Triticum aestivum L. and spring wheat in Finland. We then applied Bayesian probability inversion and a Markov Chain Monte Carlo technique to analyze uncertainties in parameter estimations and to optimize parameters. Finally, a super-ensemble-based probabilistic projection system was updated and applied to project the effects of climate change on wheat productivity and water use in Finland. The system used 6 climate scenarios and 20 sets of crop model parameters. We projected spatiotemporal changes of wheat productivity and water use due to climate change/variability during 2021-2040, 2041-2070, and 2071-2100. The results indicate that with a high probability wheat yields will increase substantially in Finland under the tested climate change scenarios, and spring wheat can benefit more from climate change than winter wheat. Nevertheless, in some areas of southern Finland, wheat production will face increasing risk of high temperature and drought, which can offset the benefits of climate change on wheat yield, resulting in an increase in yield variability and about 30% probability of yield decrease for spring wheat. Compared with spring wheat, the development, photosynthesis, and consequently yield will be much less enhanced for winter wheat, which, together with the risk of extreme weather, will result in an up to 56% probability of yield decrease in eastern parts of Finland. Our study explicitly para meterized the effects of extreme temperature and drought stress on wheat yields, and accounted for a wide range of wheat cultivars with contrasting phenological characteristics and thermal requirements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4667  
Permanent link to this record
 

 
Author Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Prasad, P.V.V.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y. url  doi
openurl 
  Title Rising temperatures reduce global wheat production Type Journal Article
  Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change  
  Volume 5 Issue 2 Pages 143-147  
  Keywords climate-change; spring wheat; dryland wheat; yield; growth; drought; heat; CO2; agriculture; adaptation  
  Abstract Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4550  
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J. doi  openurl
  Title Adapting wheat in Europe for climate change Type Journal Article
  Year 2014 Publication Journal of Cereal Science Abbreviated Journal J. Ceareal Sci.  
  Volume 59 Issue 3 Pages 245-256  
  Keywords A, maximum area of flag leaf area; ABA, abscisic acid; CV, coefficient of variation; Crop improvement; Crop modelling; FC, field capacity; GMT, Greenwich mean time; GS, growth stage; Gf, grain filling duration; HI, harvest index; HSP, heat shock protein; Heat and drought tolerance; Impact assessment; LAI, leaf area index; Ph, phylochron; Pp, photoperiod response; Ru, root water uptake; S, duration of leaf senescence; SF, drought stress factor; Sirius; Wheat ideotype  
  Abstract Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0733-5210 ISBN Medium Review  
  Area Expedition Conference  
  Notes (down) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4543  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: