|   | 
Details
   web
Records
Author Raymundo, R.; Asseng, S.; Prassad, R.; Kleinwechter, U.; Concha, J.; Condori, B.; Bowen, W.; Wolf, J.; Olesen, J.E.; Dong, Q.; Zotarelli, L.; Gastelo, M.; Alva, A.; Travasso, M.; Quiroz, R.; Arora, V.; Graham, W.; Porter, C.
Title Performance of the SUBSTOR-potato model across contrasting growing conditions Type Journal Article
Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 202 Issue Pages 57-76
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium (up) article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4967
Permanent link to this record
 

 
Author Fleisher, D.H.; Condori, B.; Quiroz, R.; Alva, A.; Asseng, S.; Barreda, C.; Bindi, M.; Boote, K.J.; Ferrise, R.; Franke, A.C.; Govindakrishnan, P.M.; Harahagazwe, D.; Hoogenboom, G.; Naresh Kumar, S.; Merante, P.; Nendel, C.; Olesen, J.E.; Parker, P.S.; Raes, D.; Raymundo, R.; Ruane, A.C.; Stockle, C.; Supit, I.; Vanuytrecht, E.; Wolf, J.; Woli, P.
Title A potato model intercomparison across varying climates and productivity levels Type Journal Article
Year 2017 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 23 Issue 3 Pages 1258-1281
Keywords
Abstract A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United States) management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with interannual variability, and predictions for all agronomic variables were significantly different from one model to another (P < 0.001). Uncertainty averaged 15% higher for low- vs. high-input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41% and 23% for yield and ET, respectively, as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for nonirrigated sites). Differences in predictions due to model representation of light utilization were significant (P < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium (up) article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4968
Permanent link to this record
 

 
Author Wang, E.; Martre, P.; Zhao, Z.; Ewert, F.; Maiorano, A.; Rötter, R.P.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Cammarano, D.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Liu, L.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ripoche, D.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.; Waha, K.; Wallach, D.; Wang, Z.; Wolf, J.; Zhu, Y.; Asseng, S.
Title The uncertainty of crop yield projections is reduced by improved temperature response functions Type Journal Article
Year 2017 Publication Nature Plants Abbreviated Journal Nature Plants
Volume 3 Issue Pages 17102
Keywords
Abstract Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections. Erratum: doi: 10.1038/nplants.2017.125
Address 2017-08-28
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium (up) article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5173
Permanent link to this record
 

 
Author Webber, H.; White, J.W.; Kimball, B.A.; Ewert, F.; Asseng, S.; Rezaei, E.E.; Pinter, P.J., Jr.; Hatfield, J.L.; Reynolds, M.P.; Ababaei, B.; Bindi, M.; Doltra, J.; Ferrise, R.; Kage, H.; Kassie, B.T.; Kersebaum, K.-C.; Luig, A.; Olesen, J.E.; Semenov, M.A.; Stratonovitch, P.; Ratjen, A.M.; LaMorte, R.L.; Leavitt, S.W.; Hunsaker, D.J.; Wall, G.W.; Martre, P.
Title Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions Type Journal Article
Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 216 Issue Pages 75-88
Keywords Heat stress; Crop model improvement; Heat and drought interactions; Climate change impact assessments; Canopy temperature; Wheat; Air CO2 Enrichment; Elevated Carbon-Dioxide; Water-Use Efficiency; Climate-Change; Wheat Evapotranspiration; Stomatal Conductance; Multimodel Ensembles; Farming Systems; Drought-Stress; Spring Wheat
Abstract Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions.
Address 2018-02-19
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium (up) Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5189
Permanent link to this record
 

 
Author Kahiluoto, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takac, J.; Ruget, F.; Ferrise, R.; Bezak, P.; Capellades, G.; Dibari, C.; Makinen, H.; Nendel, C.; Ventrella, D.; Rodriguez, A.; Bindi, M.; Trnka, M.
Title Decline in climate resilience of European wheat Type Journal Article
Year 2019 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 116 Issue 1 Pages 123-128
Keywords wheat; cultivar; Europe; climate resilience; response diversity; Diversity; Weather; Growth; Shifts; Crops; Yield; Variability
Abstract Food security relies on the resilience of staple food crops to climatic variability and extremes, but the climate resilience of European wheat is unknown. A diversity of responses to disturbance is considered a key determinant of resilience. The capacity of a sole crop genotype to perform well under climatic variability is limited; therefore, a set of cultivars with diverse responses to weather conditions critical to crop yield is required. Here, we show a decline in the response diversity of wheat in farmers’ fields in most European countries after 2002-2009 based on 101,000 cultivar yield observations. Similar responses to weather were identified in cultivar trials among central European countries and southern European countries. A response diversity hotspot appeared in the trials in Slovakia, while response diversity “deserts” were identified in Czechia and Germany and for durum wheat in southern Europe. Positive responses to abundant precipitation were lacking. This assessment suggests that current breeding programs and cultivar selection practices do not sufficiently prepare for climatic uncertainty and variability. Consequently, the demand for climate resilience of staple food crops such as wheat must be better articulated. Assessments and communication of response diversity enable collective learning across supply chains. Increased awareness could foster governance of resilience through research and breeding programs, incentives, and regulation.
Address 2019-01-17
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium (up) Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5226
Permanent link to this record