toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G. de; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L. url  doi
openurl 
  Title Crop rotation modelling—A European model intercomparison Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 70 Issue Pages 98-111  
  Keywords Model ensemble; Crop simulation models; Catch crop; Intermediate crop; Treatment; Multi-year; long-term experiment; climate-change; wheat production; n-fertilization; systems simulation; nitrogen dynamics; tillage intensity; winter-wheat; soil carbon; growth  
  Abstract • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.

Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4660  
Permanent link to this record
 

 
Author Graß, R.; Thies, B.; Kersebaum, K.-C.; Wachendorf, M. url  doi
openurl 
  Title Simulating dry matter yield of two cropping systems with the simulation model HERMES to evaluate impact of future climate change Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 70 Issue Pages 1-10  
  Keywords Climate change; Double cropping system; Biomass yield; Sowing and; harvesting dates; mean-square error; nitrogen dynamics; wheat production; carbon-dioxide; soil; water; management; sunflower; responses; crops  
  Abstract Regionalized model calculations showed increased rainfall and temperatures in winter and less precipitation and higher temperatures in summer due to climate change effects in the future for numerous countries in the northern hemisphere. Furthermore, model simulations predicted enhanced weather variability with an increased risk of yield losses and reduced yield stability. Recently, double cropping systems (DCS) were suggested as an environmental friendly and productive adaptation strategy with increased yield stability. This paper reviews the potential benefit of four DCS (rye (Secale cereale L.) as first crop and maize (Zea mays L.), sunflower (Helianthus annuus L.), sorghum (Sorghum sudanense L. x Sorghum bicolor L.) and sudan grass (S. sudanense L.) as second crops) in comparison with four conventional sole cropping systems (SCS) (maize, sunflower, sorghum and sudan grass) with regard to dry matter (DM) yield and soil water under conditions of climate change. We used the agro-ecosystem model HERMES for simulating these variables until the year 2100. The investigated crops sunflower, sorghum and sudan grass were parameterised first for HERMES achieving a satisfying performance. Results showed always higher DM yields per year of DCS compared with SCS. This was mainly caused by yield increases of the first crop winter rye harvested at the stage of milk ripeness. As a winter hardy crop, rye will benefit from increased precipitation and higher temperatures during winter months as well as from extended growth periods with an earlier onset in spring and an increase of growing days. Furthermore, rye is able to use the increased winter humidity for its spring growth in an efficient way. By contrast, model simulations showed that summer crops will be affected by reduced precipitation and higher temperatures during summer month for periods from 2050 onwards with the consequence of reduced yields. This yield reduction was found for all summer crops both in conventional sole crop and in DCS. Preponed harvesting of first crop winter rye as a consequence of earlier onset of growth period in spring under prospective climatic conditions lead to yield decrease, which could not be equalised by preponed sowing of second crops and extension of their growth period. Hence, total annual yield of both crops together decreased. The modification of sowing and harvesting dates as an adaptation strategy requires further research with the use of more holistic simulation models. To summarize, DCS may provide a promising adaptation strategy to effects of climate change with a substantial stabilisation of crop yields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4659  
Permanent link to this record
 

 
Author Sándor, R.; Ma, S.; Acutis, M.; Barcza, Z.; Ben Touhami, H.; Doro, L.; Hidy, D.; Köchy, M.; Lellei-Kovács, E.; Minet, J.; Perego, A.; Rolinski, S.; Ruget, F.; Seddaiu, G.; Wu, L.; Bellocchi, G. url  doi
openurl 
  Title Uncertainty in simulating biomass yield and carbon–water fluxes from grasslands under climate change Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue 01 Pages 49-51  
  Keywords grassland productivity; carbon balance; model simulation; uncertainty; sensitivity  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-4700 ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4651  
Permanent link to this record
 

 
Author Nendel, C.; Kersebaum, K.C.; Mirschel, W.; Wenkel, K.O. url  doi
openurl 
  Title Testing farm management options as climate change adaptation strategies using the MONICA model Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 52 Issue Pages 47-56  
  Keywords simulation model; climate change; crop management; adaptation strategies; nitrogen dynamics; carbon sequestration; crop productivity; simulation-model; change impacts; land-use; agriculture; scenarios; growth; yield  
  Abstract Adaptation of agriculture to climate change will be driven at the farm level in first place. The MONICA model was employed in four different modelling exercises for demonstration and testing different management options for farmers in Germany to adjust their production system. 30-Year simulations were run for the periods 1996-2025 and 2056-2085 using future climate data generated by a statistical method on the basis of measured data from 1961 to 2000 and the A1B scenario of the IPCC (2007a). Crop rotation designs that are expected to become possible in the future due to a prolonged vegetation period and at the same time shortened cereal growth period were tested for their likely success. The model suggested that a spring barley succeeding a winter barley may be successfully grown in the second half of the century, allowing for a larger yields by intensification of the cropping cycle. Growing a winter wheat after a sugar beet may lead to future problems as late sowing makes the winter wheat grow into periods prone to drought. Irrigation is projected to considerably improve and stabilise the yields of late cereals and of shallow rooting crops (maize and pea) on sandy soils in the continental climate part of Germany, but not in the humid West. Nitrogen fertiliser management needs to be adjusted to increasing or decreasing yield expectations and for decreasing soil moisture. On soils containing sufficient amounts of Moisture and soil organic matter, enhanced mineralisation is expected to compensate for a greater N demand. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4631  
Permanent link to this record
 

 
Author Ghaley, B.B.; Porter, J.R. doi  openurl
  Title Ecosystem function and service quantification and valuation in a conventional winter wheat production system with the DAISY model in Denmark Type Journal Article
  Year 2014 Publication Ecosystem Services Abbreviated Journal Ecosystem Services  
  Volume 10 Issue Pages 79-83  
  Keywords soil organic matter; winter wheat production; informed decision-making; ecosystem function; ecosystem service; soil carbon sequestration; organic-matter dynamics; mitigate climate-change; calibration; validation; land  
  Abstract With inevitable link between ecosystem function (EF), ecosystem services (ES) and agricultural productivity, there is a need for quantification and valuation of EF and ES in agro-ecosystems. Management practices have significant effects on soil organic matter (SOM), affecting productivity, EF and ES provision. The objective was to quantify two EF: soil water storage and nitrogen mineralization and three ES: food and fodder production and carbon sequestration, in a conventional winter wheat production system at 2.6% SOM compared to 50% lower (1.3%) and 50% higher (3.9%) SOM in Denmark by DAISY model. At 2.6% SOM, the food and fodder production was 649 and 6.86 t ha(-1) year(-1) respectively whereas carbon sequestration and soil water storage was 9.73 t ha(-1) year and 684 mm ha(-1) year(-1) respectively and nitrogen mineralisation was 83.58 kg ha(-1) year(-1), AL 2.6% SOM, the two EF and three ES values were US$ 177 and US$ 2542 ha(-1) year respectively equivalent to US$ 96 and US$1370 million year(-1) respectively in Denmark. The EF and ES quantities and values were positively correlated with SOM content. Hence, the quantification and valuation of EF and ES provides an empirical tool for optimising the Er. and ES provision for agricultural productivity. (C) 2014 Elsevier B.V. All rights reserved  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0416 ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4625  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: