|   | 
Details
   web
Records
Author Wallach, D.; Mearns, L.O.; Ruane, A.C.; Rötter, R.P.; Asseng, S.
Title Lessons from climate modeling on the design and use of ensembles for crop modeling Type Journal Article
Year 2016 Publication Climatic Change Abbreviated Journal Clim. Change
Volume Issue Pages
Keywords Model ensembles; Crop models; Climate models; Model weighting; Super ensembles
Abstract Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009 1573-1480 ISBN Medium (down) Review
Area CropM Expedition Conference
Notes CropM; wos; ft=macsur; wsnotyet; Approved no
Call Number MA @ admin @ Serial 4781
Permanent link to this record
 

 
Author Kipling, R.P.; Bannink, A.; Bellocchi, G.; Dalgaard, T.; Fox, N.J.; Hutchings, N.J.; Kjeldsen, C.; Lacetera, N.; Sinabell, F.; Topp, C.F.E.; van Oijen, M.; Virkajärvi, P.; Scollan, N.D.
Title Modeling European ruminant production systems: Facing the challenges of climate change Type Journal Article
Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 147 Issue Pages 24-37
Keywords Food security; Livestock systems; Modeling; Pastoral systems; Policy support; Ruminants
Abstract Ruminant production systems are important producers of food, support rural communities and culture, and help to maintain a range of ecosystem services including the sequestering of carbon in grassland soils. However, these systems also contribute significantly to climate change through greenhouse gas (GHG) emissions, while intensi- fication of production has driven biodiversity and nutrient loss, and soil degradation. Modeling can offer insights into the complexity underlying the relationships between climate change, management and policy choices, food production, and the maintenance of ecosystem services. This paper 1) provides an overview of how ruminant systems modeling supports the efforts of stakeholders and policymakers to predict, mitigate and adapt to climate change and 2) provides ideas for enhancing modeling to fulfil this role. Many grassland models can predict plant growth, yield and GHG emissions from mono-specific swards, but modeling multi-species swards, grassland quality and the impact of management changes requires further development. Current livestock models provide a good basis for predicting animal production; linking these with models of animal health and disease is a prior- ity. Farm-scale modeling provides tools for policymakers to predict the emissions of GHG and other pollutants from livestock farms, and to support the management decisions of farmers from environmental and economic standpoints. Other models focus on how policy and associated management changes affect a range of economic and environmental variables at regional, national and European scales. Models at larger scales generally utilise more empirical approaches than those applied at animal, field and farm-scales and include assumptions which may not be valid under climate change conditions. It is therefore important to continue to develop more realistic representations of processes in regional and global models, using the understanding gained from finer-scale modeling. An iterative process of model development, in which lessons learnt from mechanistic models are ap- plied to develop ‘smart’ empirical modeling, may overcome the trade-off between complexity and usability. De- veloping the modeling capacity to tackle the complex challenges related to climate change, is reliant on closer links between modelers and experimental researchers, and also requires knowledge-sharing and increasing technical compatibility across modeling disciplines. Stakeholder engagement throughout the process of model development and application is vital for the creation of relevant models, and important in reducing problems re- lated to the interpretation of modeling outcomes. Enabling modeling to meet the demands of policymakers and other stakeholders under climate change will require collaboration within adequately-resourced, long-term inter-disciplinary research networks
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium (down) Review
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4734
Permanent link to this record
 

 
Author Ramirez-Villegas, J.; Watson, J.; Challinor, A.J.
Title Identifying traits for genotypic adaptation using crop models Type Journal Article
Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3451-3462
Keywords Adaptation, Physiological/*genetics; Crops, Agricultural/*genetics; Environment; Genotype; *Models, Theoretical; *Quantitative Trait, Heritable; Climate change; crop models; genotypic adaptation; ideotypes; impacts
Abstract Genotypic adaptation involves the incorporation of novel traits in crop varieties so as to enhance food productivity and stability and is expected to be one of the most important adaptation strategies to future climate change. Simulation modelling can provide the basis for evaluating the biophysical potential of crop traits for genotypic adaptation. This review focuses on the use of models for assessing the potential benefits of genotypic adaptation as a response strategy to projected climate change impacts. Some key crop responses to the environment, as well as the role of models and model ensembles for assessing impacts and adaptation, are first reviewed. Next, the review describes crop-climate models can help focus the development of future-adapted crop germplasm in breeding programmes. While recently published modelling studies have demonstrated the potential of genotypic adaptation strategies and ideotype design, it is argued that, for model-based studies of genotypic adaptation to be used in crop breeding, it is critical that modelled traits are better grounded in genetic and physiological knowledge. To this aim, two main goals need to be pursued in future studies: (i) a better understanding of plant processes that limit productivity under future climate change; and (ii) a coupling between genetic and crop growth models-perhaps at the expense of the number of traits analysed. Importantly, the latter may imply additional complexity (and likely uncertainty) in crop modelling studies. Hence, appropriately constraining processes and parameters in models and a shift from simply quantifying uncertainty to actually quantifying robustness towards modelling choices are two key aspects that need to be included into future crop model-based analyses of genotypic adaptation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 1460-2431 ISBN Medium (down) Review
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4645
Permanent link to this record
 

 
Author Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K.
Title Effect of drought and heat stresses on plant growth and yield: a review Type Journal Article
Year 2013 Publication International Agrophysics Abbreviated Journal International Agrophysics
Volume 27 Issue 4 Pages 463-477
Keywords water stress; high temperature; root and shoot; growth; tolerance mechanisms; management practices; water-use efficiency; soil physical-properties; abscisic-acid; high-temperature; root systems; hydraulic architecture; conservation tillage; photosystem-ii; l. genotypes; drying soil
Abstract Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress- tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0236-8722 ISBN Medium (down) Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4608
Permanent link to this record
 

 
Author Waterworth, W.M.; Bray, C.M.; West, C.E.
Title The importance of safeguarding genome integrity in germination and seed longevity Type Journal Article
Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3549-3558
Keywords DNA Damage/genetics; DNA Repair/genetics; *Genome, Plant; Germination/*genetics; Plant Physiological Phenomena/*genetics; Seeds/*genetics; Ageing; DNA repair; double-strand break; germination; longevity; recombination; seed vigour; viability
Abstract Seeds are important to agriculture and conservation of plant biodiversity. In agriculture, seed germination performance is an important determinant of crop yield, in particular under adverse climatic conditions. Deterioration in seed quality is associated with the accumulation of cellular damage to macromolecules including lipids, protein, and DNA. Mechanisms that mitigate the deleterious cellular damage incurred in the quiescent state and in cycles of desiccation-hydration are crucial for the maintenance of seed viability and germination vigour. In early-imbibing seeds, damage to the embryo genome must be repaired prior to initiation of cell division to minimize growth inhibition and mutation of genetic information. Here we review recent advances that have established molecular links between genome integrity and seed quality. These studies identified that maintenance of genome integrity is particularly important to the seed stage of the plant lifecycle, revealing new insight into the physiological roles of plant DNA repair and recombination mechanisms. The high conservation of DNA repair and recombination factors across plant species underlines their potential as promising targets for the improvement of crop performance and development of molecular markers for prediction of seed vigour.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 1460-2431 ISBN Medium (down) Review
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4579
Permanent link to this record