toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author D’Ottavio, P.; Francioni, M.; Trozzo, L.; Sedic, E.; Budimir, K.; Avanzolini, P.; Trombetta, M.F.; Porqueddu, C.; Santilocchi, R.; Toderi, M. url  doi
openurl 
  Title Trends and approaches in the analysis of ecosystem services provided by grazing systems: A review Type Journal Article
  Year 2018 Publication Grass and Forage Science Abbreviated Journal Grass Forage Sci.  
  Volume 73 Issue 1 Pages 15-25  
  Keywords climate regulation; food, habitat services; land degradation prevention; moderation of extreme events; natural (landscape) heritage; primary production; regulation of water flows; water quality regulation; Grassland Management; Plant-Communities; Land Degradation; Inner-Mongolia; Trade-Offs; Biodiversity; Provision; Impact; Consequences; Conservation  
  Abstract The ecosystem services (ES) approach is a framework for describing the benefits of nature to human well-being, and this has become a popular instrument for assessment and evaluation of ecosystems and their functions. Grazing lands can provide a wide array of ES that depend on their management practices and intensity. This article reviews the trends and approaches used in the analysis of some relevant ES provided by grazing systems, in line with the framework principles of the Millennium Ecosystem Assessment (MA). The scientific literature provides reports of many studies on ES in general, but the search here focused on grazing systems, which returned only sixty-two papers. This review of published papers highlights that: (i) in some papers, the concept of ES as defined by the MA is misunderstood (e.g., lack of anthropocentric vision); (ii) 34% of the papers dealt only with one ES, which neglects the need for the multisectoral approach suggested by the MA; (iii) few papers included stakeholder involvement to improve local decision-making processes; (iv) cultural ES have been poorly studied despite being considered the most relevant for local and general stakeholders; and (v) stakeholder awareness of well-being as provided by ES in grazing systems can foster both agri-environmental schemes and the willingness to pay for these services.  
  Address 2018-03-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-5242 ISBN Medium Review  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5191  
Permanent link to this record
 

 
Author Lotze-Campen, H.; von Witzke, H.; Noleppa, S.; Schwarz, G. url  doi
openurl 
  Title Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany Type Journal Article
  Year 2015 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 136 Issue Pages 79-84  
  Keywords Plant breeding; CO2 emissions; Cost–benefit analysis; Social rate of return; Agricultural research policy  
  Abstract Highlights • We analyze the economic effects of plant breeding research in Germany. • Effects of reduced CO2 emissions due to productivity increases are being quantified. • Expansion of global agricultural area has been reduced by 1–1.5 million ha. • CO2 emissions have been reduced by 160–235 million tons. • German plant breeding research has an economic value of 10.8–15.6 billion EUR. Abstract We analyze the economic effects of plant breeding research in Germany. In addition to market effects, for the first time also effects of reduced CO2 emissions due to productivity increases are being quantified. The analysis shows that investments in German plant breeding research in the period 1991–2010 have reduced the global expansion of agricultural area by 1–1.5 million hectares. This has led to reduced CO2 emissions of 160–235 million tons. The economic value generated by plant breeding research, through increased production and reduced greenhouse gas emissions, is estimated at 10.8–15.6 billion EUR in the same period. This can be translated into a social rate of return on research investment in the range of 40–80% per year. Projections for the period 2011–2030 generate a return rate in the range of 65–140% per year. Investments into plant breeding research in Germany are highly profitable from a societal point of view. At the same time, our results show significant under-investments in agricultural research in Germany. These results provide a good justification for policy-makers to reverse funding cuts for public agricultural research over the last decades and to improve institutional conditions for private research, e.g. through better protection of intellectual property rights.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4999  
Permanent link to this record
 

 
Author Rötter, R.P.; Appiah, M.; Fichtler, E.; Kersebaum, K.C.; Trnka, M.; Hoffmann, M.P. doi  openurl
  Title Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes-A review Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal  
  Volume 221 Issue Pages 142-156  
  Keywords ft_macsur; Agroclimatic extremes; Crop model; Heat; Drought; Heavy rain; Anthropogenic Climate-Change; Head-Emergence Frost; Weather Extremes; Wheat Yields; Temperature Variability; Induced Sterility; Food Security; Soil-Moisture; Plant-Growth; Winter-Wheat  
  Abstract Climate change implies higher frequency and magnitude of agroclimatic extremes threatening plant production and the provision of other ecosystem services. This review is motivated by a mismatch between advances made regarding deeper understanding of abiotic stress physiology and its incorporation into ecophysiological models in order to more accurately quantifying the impacts of extreme events at crop system or higher aggregation levels. Adverse agroclimatic extremes considered most detrimental to crop production include drought, heat, heavy rains/hail and storm, flooding and frost, and, in particular, combinations of them. Our core question is: How have and could empirical data be exploited to improve the capability of widely used crop simulation models in assessing crop impacts of key agroclimatic extremes for the globally most important grain crops? To date there is no comprehensive review synthesizing available knowledge for a broad range of extremes, grain crops and crop models as a basis for identifying research gaps and prospects. To address these issues, we selected eight major grain crops and performed three systematic reviews using SCOPUS for period 1995-2016. Furthermore, we amended/complemented the reviews manually and performed an in-depth analysis using a sub-sample of papers. Results show that by far the majority of empirical studies (1631 out of 1772) concentrate on the three agroclimatic extremes drought, heat and heavy rain and on the three major staples wheat, maize and rice (1259 out of 1772); the concentration on just a few has increased over time. With respect to modelling studies two model families, i.e. CERES-DSSAT and APSIM, are dearly dominating for wheat and maize; for rice, ORYZA2000 and CERES-Rice predominate and are equally strong. For crops other than maize and wheat the number of studies is small. Empirical and modelling papers don’t differ much in the proportions the various extreme events are dealt with drought and heat stress together account for approx. 80% of the studies. There has been a dramatic increase in the number of papers, especially after 2010. As a way forward, we suggest to have very targeted and well-designed experiments on the specific crop impacts of a given extreme as well as of combinations of them. This in particular refers to extremes addressed with insufficient specificity (e.g. drought) or being under-researched in relation to their economic importance (heavy rains/storm and flooding). Furthermore, we strongly recommend extending research to crops other than wheat, maize and rice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5199  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: