|   | 
Details
   web
Records
Author Köchy, M.
Title Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A workshop for decisionmakers. Workshop Programme Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages Sp6-0
Keywords (up)
Abstract Local agricultural production is strongly affected by the weather. Climate change is likely to cause increases in extreme weather events, as well as underlying changes in average conditions. If agriculture is to be sustainable and profitable, farmers will need to adapt to these changes. What impacts could climate change have on farming systems across Europe, and how important are they likely to be compared to the impacts of policies?In order to better answer these questions, the FACCE JPI knowledge hub MACSUR, compris­ing more than 300 researchers in 18 countries, is assessing the current state of the art in the modelling of agri­cultural systems for food security.At this workshop we invited policymakers and other stakeholders to learn about regional impacts of climate change on European agriculture relative to policies and to inform researchers about the consultation needs of stakeholders. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2081
Permanent link to this record
 

 
Author Halford, N.G.; Foyer, C.H.
Title Producing a road map that enables plants to cope with future climate change Type Journal Article
Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3433-3434
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 ISBN Medium Editorial Material
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4704
Permanent link to this record
 

 
Author Köchy, M.; Hiederer, R.; Freibauer, A.
Title Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world Type Journal Article
Year 2015 Publication Soil Abbreviated Journal Soil
Volume 1 Issue Pages 351-365
Keywords (up)
Abstract •Soils contain 1062 Pg organic C (SOC) in 0-1 m depth based on the adjusted Harmonized World Soil Database. Different estimates of bulk density of Histosols cause an uncertainty in the range of -56/+180 Pg. We also report the frequency distribution of SOC stocks by continent, wetland type, and permafrost type. Using additional estimates for frozen and deeper soils, global soils are estimated to contain 1325 Pg SOC in 0-1m and ca. 3000 Pg, including deeper layers. The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD’s bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm−3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of −56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of “wetland”, wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of “peatland”.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-398x ISBN Medium Article
Area Expedition Conference
Notes LiveM, Hub, ft_macsur Approved no
Call Number MA @ admin @ Serial 4686
Permanent link to this record
 

 
Author Eory, V.; MacLeod, M.; Shrestha, S.; Roberts, D.
Title Linking an economic and a life-cycle analysis biophysical model to support agricultural greenhouse gas mitigation policy Type Journal Article
Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics
Volume 63 Issue Pages 133-142
Keywords (up)
Abstract Greenhouse gas (GHG) mitigation is one of the main challenges facing agriculture, exacerbated by the increasing demand for food, in particular for livestock products. Production expansion needs to be accompanied by reductions in the GHG emission intensity of agricultural products, if significant increases in emissions are to be avoided. Suggested farm management changes often have systemic effects on farm, therefore their investigation requires a whole farm approach. At the same time, changes in GHG emissions arising offfarm in food supply chains (pre- or post-farm) can also occur as a consequence of these management changes. A modelling framework that quantifies the whole-farm, life-cycle effects of GHG mitigation measures on emissions and farm finances has been developed. It is demonstrated via a case study of sexed semen on Scottish dairy farms. The results show that using sexed semen on dairy farms might be a costeffective way to reduce emissions from cattle production by increasing the amount of lower emission intensity ‘dairy beef’ produced. It is concluded that a modelling framework combining a GHG life cycle analysis model and an economic model is a useful tool to help designing targeted agri-environmental policies at regional and national levels. It has the flexibility to model a wide variety of farm types, locations and management changes, and the LCA-approach adopted helps to ensure that GHG emission leakage does not occur in the supply chain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4670
Permanent link to this record
 

 
Author Bennett, E.; Carpenter, S.R.; Gordon, L.J.; Ramankutty, N.; Balvanera, P.; Campbell, B.; Cramer, W.; Foley, J.; Folke, C.; Carlberg, L.; Lui, J.; Lotze-Campen, H.; Mueller, N.D.; Peterson, G.D.; Polasky, S.; Rockström, J.; Scholes, R.J.; Spierenburg, M.
Title Toward a more resilient agriculture Type Journal Article
Year 2014 Publication The Solutions Journal Abbreviated Journal The Solutions Journal
Volume 5 Issue 5 Pages 65-75
Keywords (up)
Abstract Agriculture is a key driver of change in the Anthropocene. It is both a critical factor for human well-being and development and a major driver of environmental decline. As the human population expands to more than 9 billion by 2050, we will be compelled to find ways to adequately feed this population while simultaneously decreasing the environmental impact of agriculture, even as global change is creating new circumstances to which agriculture must respond. Many proposals to accomplish this dual goal of increasing agricultural production while reducing its environmental impact are based on increasing the efficiency of agricultural production relative to resource use and relative to unintended outcomes such as water pollution, biodiversity loss, and greenhouse gas emissions. While increasing production efficiency is almost certainly necessary, it is unlikely to be sufficient and may in some instances reduce long-term agricultural resilience, for example, by degrading soil and increasing the fragility of agriculture to pest and disease outbreaks and climate shocks. To encourage an agriculture that is both resilient and sustainable, radically new approaches to agricultural development are needed. These approaches must build on a diversity of solutions operating at nested scales, and they must maintain and enhance the adaptive and transformative capacity needed to respond to disturbances and avoid critical thresholds. Finding such approaches will require that we encourage experimentation, innovation, and learning, even if they sometimes reduce short-term production efficiency in some parts of the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4657
Permanent link to this record