toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cammarano, D.; Rivington, M.; Matthews, K.; B,; Bellocchi, G. url  openurl
  Title Estimates of crop responses to climate change with quantified ranges of uncertainty Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C4.1.3  
  Keywords (up)  
  Abstract In estimating responses of crops to future climate realisations, it is necessary to understand and differentiate between the sources of uncertainty in climate models and how these lead to errors in estimating the past climate and biases in future projections, and how these affect crop model estimates. This paper investigates the complexities in using climate model projections representing different spatial scales within climate change impacts and adaptation studies. This is illustrated by simulating spring barley with three crop models run using site-specific observed, original (50•50 km) and bias corrected downscaled (site-specific) hindcast (1960-1990) weather data from the HadRM3 Regional Climate Model (RCM). Original and bias corrected downscaled weather data were evaluated against the observed data. The comparisons made between the crop models were in the light of lessons learned from this data evaluation. Though the bias correction downscaling method improved the match between observed and hindcast data, this did not always translate into better matching of crop models estimates. At four sites the original HadRM3 data produced near identical mean simulated yield values as from the observed weather data, despite differences in the weather data, giving a situation of ‘right results for the wrong reasons’. This was likely due to compensating errors in the input weather data and non-linearity in crop models processes, making interpretation of results problematic. Overall, bias correction downscaling improved the quality of simulated outputs. Understanding how biases in climate data manifest themselves in crop models gives greater confidence in the utility of the estimates produced using downscaled future climate projections. The results indicate implications on how future projections of climate change impacts are interpreted. Fundamentally, considerable care is required in determining the impact weather data sources have in climate change impact and adaptation studies, whether from individual models or ensembles. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2098  
Permanent link to this record
 

 
Author Sharif, B.; Mankowski, D.; Kersebaum, K.C.; Trnka, M.; Schelde, K.; Olsesen, J.E. url  openurl
  Title Empirical analysis on crop-weather relationships Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C2.5  
  Keywords (up)  
  Abstract There have been several studies, where process-based crop models are developed, used and compared in order to project crop production and corresponding model uncertainties under climate change. Despite many advances in this field, there are some correlations between climate variables and crop growth, such as pest and diseases, that is often absent in process-based models. Such relationships can be simulated using empirical models. In this study, several statistical techniques were applied on winter oilseed rape data collected in some European countries. The empirical models were then used to predict yield of winter oilseed rape in the field experiments during more than 20 years, up to 2013. Results suggest that newly developed regression techniques such as shrinkage methods work well both in yield projections and finding the influential climatic variables. Many of regression techniques agree in terms of yield prediction; however, choice of significant climate variables is rather sensitive to the choice of regression technique. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2092  
Permanent link to this record
 

 
Author Janssen, S.; Houtkamp, J.; De Groot, H.; Schils, R. url  openurl
  Title Online web tool for data visualization Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C2.6  
  Keywords (up)  
  Abstract This deliverable lays out the work as done as part of MACSUR CropM on data, with the focus on providing a web tool for visualization of model output. It was decided early on that not a specific MACSUR web tool would be developed as part of MACSUR for phase 1, and mostly results would be visualized in other available tools, such as the Global Yield Gap Atlas, which are recognised resources for visualizations. Only in relationship to the MACSUR Geonetwork data catalog hosted at Aarhus University some developments where started. Operationally speaking, most data was still being generated during phase 1, so there was not enough to visualize on specific websites and partners did not commit financial resources to their development, and only in kind was available. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2093  
Permanent link to this record
 

 
Author Trnka, M.; Kersebaum, K.; Christian,; Olesen, J.E. url  openurl
  Title Description of the compiled experimental data available in the MACSUR CropM database Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C2.1  
  Keywords (up)  
  Abstract The input data necessary for crop model simulations and data for their calibration/validation (and thus requirements for observations and measurements in suitable experiments) have been collected through out the project together with data for additional analysis of abiotic factors influencing yields. A list of possible dataset was collated in the first year of project however very few of the existing datasets were found usable for the crop model simulation as they fell short of the requirements defined in the part 2.3. However database has been populated as planned with the results of the ongoing MACSUR studies and will serve in the same way for the MACSUR 2 duration. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2090  
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.; Christian,; Olesen, J.E.; Van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S. url  openurl
  Title Crop modelling for integrated assessment of risk to food production from climate change Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C0.3  
  Keywords (up)  
  Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2089  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: