|   | 
Details
   web
Records
Author Siczek, A.; Horn, R.; Lipiec, J.; Usowicz, B.; Łukowski, M.
Title Effects of soil deformation and surface mulching on soil physical properties and soybean response related to weather conditions Type Journal Article
Year 2015 Publication Soil and Tillage Research Abbreviated Journal Soil and Tillage Research
Volume 153 Issue Pages 175-184
Keywords (down) straw mulch; soil temperature; soil matric potential; soil penetration resistance; soybean biomass; seed and protein yield; water productivity; bulk-density; management-practices; crop production; n-2 fixation; compaction; growth; nitrogen; yield; straw; temperature
Abstract A field experiment was conducted on Haplic Luvisol developed from loess to assess the effects of soil deformation and straw mulch on soil water status (matric potential), temperature, penetration resistance, soybean growth, seed yield and yield components including straw, protein and oil in 2006-2008. Water use efficiencies related to the amount of rainfall during the growing seasons were calculated for seeds and total above ground biomass. The soil deformation levels (main plots) comprised the following trials: non-compacted (NC, 0 tractor pass), moderately compacted (MC, 3 passes), and strongly compacted (SC, 5 passes). A uniform seedbed in all plots was prepared by harrowing before planting. The main plots included sub-plots without and with surface wheat straw mulch (0.5 kg m(-2)) and the corresponding trials were NC + M, MC + M, SC + M. The amount and distribution of rainfall during the growing season differed among the experimental years with extended drought at bloom-full seed (R2-R6) stages in 2006, good water supply in 2007, and alternative periods with relatively high and low rainfalls in 2008. The effect of soil deformation on matric potential was influenced by weather conditions, soybean growth phase, mulching and depth. The differences were greatest in 2007 and 2008 at R7-R8 growth stages. With increasing deformation level from NC to SC matric potential for 0-15 cm depth during these stages significantly decreased from -401 to -1184 kPa in 2007 and from -1154 to -1432 kPa in 2008. On mulched soil, the corresponding ranges were from -541 to -841 klpa and from -748 to -1386 kPa, respectively. In the dry summer 2006, the differences were smaller and less consistent. Irrespective of soil deformation level, mulching reduced soil temperature in most growth phases but most pronounced initially. Most yield components increased from NC to MC during the experiments which could be attributed to enhanced root water and nutrient uptake rates and decreased from MC to SC due to high soil strength that restrained root growth down to deeper depth. The yields of seeds, straw, protein and oil as well as water productivity of soybean seed and biomass were improved by mulching in 2007-2008. This improvement was more pronounced in 2007 when the mean yield of seeds, protein and oil were significantly greater by 16, 29 and 11%, respectively and was attributed to positive alterations in soil water retention. These results indicate the possibilities of improvement in soybean performance by identifying allowable amount of traffic and mulching practices at planting depending on weather fluctuations during the growing season. Since rainfall and air temperature distribution in 2007 are close to those averaged over a long period of time, the use of straw mulch may positively affect soybean performance and yields excluding anomalously dry years. The positive effect of straw mulch can be enhanced by moderate soil deformation combined with seedbed loosening before planting to avoid constraining effect of soil structure on crop establishment. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-1987 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4732
Permanent link to this record
 

 
Author Calanca, P.; Semenov, M.A.
Title Local-scale climate scenarios for impact studies and risk assessments: integration of early 21st century ENSEMBLES projections into the ELPIS database Type Journal Article
Year 2013 Publication Theoretical and Applied Climatology Abbreviated Journal Theor. Appl. Climatol.
Volume 113 Issue 3-4 Pages 445-455
Keywords (down) stochastic weather generators; regional climate; lars-wg; daily; precipitation; models; simulation; europe; temperature; variability; heatwaves
Abstract We present the integration of early 21st century climate projections for Europe based on simulations carried out within the EU-FP6 ENSEMBLES project with the LARS-WG stochastic weather generator. The aim was to upgrade ELPIS, a repository of local-scale climate scenarios for use in impact studies and risk assessments that already included global projections from the CMIP3 ensemble and regional scenarios for Japan. To obtain a more reliable simulation of daily rainfall and extremes, changes in wet and dry series derived from daily ENSEMBLES outputs were taken into account. Kernel average smoothers were used to reduce noise arising from sampling artefacts. Examples of risk analyses based on 25-km climate projections from the ENSEMBLES ensemble of regional climate models illustrate the possibilities offered by the updated version of ELPIS. The results stress the importance of tailored information for local-scale impact assessments at the European level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0177-798x 1434-4483 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4484
Permanent link to this record
 

 
Author Brylińska, M.; Sobkowiak, S.; Stefańczyk, E.; Śliwka, J.
Title Potato cultivation system affects population structure of Phytophthora infestans Type Journal Article
Year 2016 Publication Fungal Ecology Abbreviated Journal Fungal Ecology
Volume 20 Issue Pages 132-143
Keywords (down) SSR; Population genetic structure; Late blight; Potato; late blight resistance; mating-type; microsatellite markers; phenotypic diversity; sexual reproduction; genotypic diversity; nordic countries; severe outbreaks; sarpo mira; pathogenicity
Abstract Phytophthora infestans is one of the most destructive potato pathogens. Many factors influence the population structure of P. infestans, including migration, climate and type of potato cultivation. Here, we analyse 365 P. infestans isolates collected from three regions of Poland over three years. We determined mating type, mitochondrial haplotype, resistance to metalaxyl, virulence and polymorphism at 14 simple sequence repeat (SSR) loci. Analysis of SSR markers showed high genetic diversity associated with this population. Model-based structure analysis grouped 299 unique genotypes into four main clusters. The P. infestans isolates collected from the Mlochow region, which has the most intensive level of potato cultivation, formed a distinct cluster, indicating a strong effect of the cultivation system on pathogen population structure. Three clusters contained isolates with frequent presence of three alleles at one locus, which may affect their capacity for sexual reproduction and preserve groups of fit genotypes that propagate asexually. (C) 2016 Elsevier Ltd and The British Mycological Society.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5048 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4720
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Wang, E.; Nendel, C.; Kersebaum, K.C.; Haas, E.; Kiese, R.; Klatt, S.; Eckersten, H.; Vanuytrecht, E.; Kuhnert, M.; Lewan, E.; Rötter, R.; Roggero, P.P.; Wallach, D.; Cammarano, D.; Asseng, S.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F.
Title Variability of effects of spatial climate data aggregation on regional yield simulation by crop models Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 53-69
Keywords (down) spatial aggregation effects; crop simulation model; input data; scaling; variability; yield simulation; model comparison; input data aggregation; systems simulation; nitrogen dynamics; data resolution; n2o emissions; winter-wheat; scale; water; impact; apsim
Abstract Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield estimates from large-scale simulations may be biased, compared to simulations with high-resolution input data. We evaluated this so-called aggregation effect for 13 crop models for the region of North Rhine-Westphalia in Germany. The models were supplied with climate data of 1 km resolution and spatial aggregates of up to 100 km resolution raster. The models were used with 2 crops (winter wheat and silage maize) and 3 production situations (potential, water-limited and nitrogen-water-limited growth) to improve the understanding of errors in model simulations related to data aggregation and possible interactions with the model structure. The most important climate variables identified in determining the model-specific input data aggregation on simulated yields were mainly related to changes in radiation (wheat) and temperature (maize). Additionally, aggregation effects were systematic, regardless of the extent of the effect. Climate input data aggregation changed the mean simulated regional yield by up to 0.2 t ha(-1), whereas simulated yields from single years and models differed considerably, depending on the data aggregation. This implies that large-scale crop yield simulations are robust against climate data aggregation. However, large-scale simulations can be systematically biased when being evaluated at higher temporal or spatial resolution depending on the model and its parameterization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4694
Permanent link to this record
 

 
Author Witkowska-Walczak, B.; Sławiński, C.; Bartmiński, P.; Melke, J.; Cymerman, J.
Title Water conductivity of arctic zone soils (Spitsbergen) Type Journal Article
Year 2014 Publication International Agrophysics Abbreviated Journal International Agrophysics
Volume 28 Issue 4 Pages 529-535
Keywords (down) soils; arctic zone; water conductivity; grain size distribution; pore size distribution; SW spitsbergen; Svalbard; glacier; flow
Abstract The water conductivity of arctic zone soils derived in different micro-relief forms was determined. The greatest water conductivity at the 0-5 cm depth for the higher values of water potentials (> -7 kJ m(-3)) was shown by tundra polygons (Brunic-Turbic Cryosol, Arenic) – 904-0.09 cm day(-1), whereas the lowest were exhibited by Turbic Cryosols – 95-0.05 cm day(-1). Between -16 and -100 kJ m(-3), the water conductivity for tundra polygons rapidly decreased to 0.0001 cm day(-1), whereas their decrease for the other forms was much lower and in consequence the values were 0.007, 0.04, and 0.01 cm day(-1) for the mud boils (Turbic Cryosol (Siltic, Skeletic)), cell forms (Turbic Cryosol (Siltic, Skeletic)), and sorted circles (Turbic Cryosol (Skeletic)), respectively. In the 10-15 cm layer, the shape of water conductivity curves for the higher values of water potentials is nearly the same as for the upper layer. Similarly, the water conductivity is the highest -0.2 cm day(-1) for tundra polygons. For the lower water potentials, the differences in water conductivity increase to the decrease of soil water potential. At the lowest potential the water conductivity is the highest for sorted circles -0.02 cm day(-1) and the lowest in tundra polygons -0.00002 cm day(-1).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2300-8725 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4642
Permanent link to this record