toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Caubel, J.; García de Cortázar-Atauri, I.; Launay, M.; de Noblet-Ducoudré, N.; Huard, F.; Bertuzzi, P.; Graux, A.-I. url  doi
openurl 
  Title Broadening the scope for ecoclimatic indicators to assess crop climate suitability according to ecophysiological, technical and quality criteria Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 207 Issue Pages 94-106  
  Keywords (down) Climate suitability; Indicator-based method of evaluation; Ecoclimatic; indicator; Crop phenology; Crop ecophysiology; Crop management; Yield; quality; high-temperature; heat-stress; change scenarios; maize; wheat; growth; yield; agriculture; systems; time  
  Abstract The cultivation of crops in a given area is highly dependent of climatic conditions. Assessment of how the climate is favorable is highly useful for planners, land managers, farmers and plant breeders who can propose and apply adaptation strategies to improve agricultural potentialities. The aim of this study was to develop an assessment method for crop-climate suitability that was generic enough to be applied to a wide range of issues and crops. The method proposed is based on agroclimatic indicators that are calculated over phenological periods (ecoclimatic indicators). These indicators are highly relevant since they provide accurate information about the effect of climate on particular plant processes and cultural practices that take place during specific phenological periods. Three case studies were performed in order to illustrate the potentialities of the method. They concern annual (maize and wheat) and perennial (grape) crops and focus on the study of climate suitability in terms of the following criteria: ecophysiological, days available to carry out cultural practices, and harvest quality. The analysis of the results revealed both the advantages and limitations of the method. The method is general and flexible enough to be applied to a wide range of issues even if an expert assessment is initially needed to build the analysis framework. The limited number of input data makes it possible to use it to explore future possibilities for agriculture in many areas. The access to intermediate information through elementary ecoclimatic indicators allows users to propose targeted adaptations when climate suitability is not satisfactory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4553  
Permanent link to this record
 

 
Author Webber, H.; Zhao, G.; Wolf, J.; Britz, W.; Vries, W. de; Gaiser, T.; Hoffmann, H.; Ewert, F. url  doi
openurl 
  Title Climate change impacts on European crop yields: Do we need to consider nitrogen limitation Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 71 Issue Pages 123-134  
  Keywords (down) Climate impact assessment; Nitrogen limitation; European crop yields; SIMPLACE Crop modelling framework; model calibration; winter-wheat; scale; co2; productivity; agriculture; strategies; scenarios; systems; growth  
  Abstract Global climate impact studies with crop models suggest that including nitrogen and water limitation causes greater negative climate change impacts on actual yields compared to water-limitation only. We simulated water limited and nitrogen water limited yields across the EU-27 to 2050 for six key crops with the SIMPLACE<LINTUL5, DRUNIR, HEAT> model to assess how important consideration of nitrogen limitation is in climate impact studies for European cropping systems. We further investigated how crop nitrogen use may change under future climate change scenarios. Our results suggest that inclusion of nitrogen limitation hardly changed crop yield response to climate for the spring-sown crops considered (grain maize, potato, and sugar beet). However, for winter-sown crops (winter barley, winter rapeseed and winter wheat), simulated impacts to 2050 were more negative when nitrogen limitation was considered, especially with high levels of water stress. Future nitrogen use rates are likely to decrease due to climate change for spring-sown crops, largely in parallel with their yields. These results imply that climate change impact studies for winter-sown crops should consider N-fertilization. Specification of future N fertilization rates is a methodological challenge that is likely to need integrated assessment models to address.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4726  
Permanent link to this record
 

 
Author Bojar, W.; Knopik, L.; Żarski, J.; Kuśmierek-Tomaszewska, R. url  openurl
  Title Integrated assessment of crop productivity based on the food supply forecasting Type Journal Article
  Year 2016 Publication Agricultural Economics – Czech Abbreviated Journal Agricultural Economics – Czech  
  Volume 61 Issue 11 Pages 502-510  
  Keywords (down) climate changes; decision-making tools; estimation of parameters; forecasted outputs; gamma distribution; predicting yields; climate-change; emissions scenarios; impacts; potato; yield; growth; policy; scale; water  
  Abstract Climate change scenarios suggest that long periods without rainfall will occur in the future often causing instability of the agricultural products market. The aim of our research was to build a model describing the amount of precipitation and droughts for forecasting crop yields in the future. In this study, we analysed a non-standard mixture of gamma and one point distributions as the model of rainfall. On the basis of the rainfall data, one can estimate parameters of the distribution. Parameter estimators were constructed using a method of maximum likelihood. The obtained rainfall data allow confirming the hypothesis of the adequacy of the proposed rainfall models. Long series of droughts allow one to determine the probabilities of adverse phenomena in agriculture. Based on the model, yields of barley in the years 2030 and 2050 were forecasted which can be used for the assessment of other crops productivity. The results obtained with this approach can be used to predict decreases in agricultural production caused by prospective rainfall shortages. This will enable decision makers to shape effective agricultural policies in order to learn how to balance the food supplies and demands through an appropriate management of stored raw food materials and import/export policies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0139-570x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4644  
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Wang, M.; Öztürk, I.; Zhang, H.; Chen, F. url  doi
openurl 
  Title Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 78 Issue Pages 60-72  
  Keywords (down) Climate change; Vulnerability; Impact; Adaptation; Cropping systems; The Northeast Farming Region of China; maize production; high-temperature; growth period; yield; rice; drought; management; nitrogen; crops; pests  
  Abstract The Northeast Farming Region of China (NFR) is a very important crop growing area, comprising seven sub-regions: Xing’anling (XA), Sanjiang (SJ), Northwest Songliao (NSL), Central Songliao (CSL), Southwest Songliao (SSL), Changbaishan (CB) and Liaodong (LD), which has been severely affected by extreme climate events and climatic change. Therefore, a set of expert survey has been done to identify current and project future climate limitations to crop production and explore appropriate adaptation measures in NFR. Droughts have been the largest limitation for maize (Zea mays L.) in NSL and SSL, and for soybean (Glycine max L Merr.) in SSL. Chilling damage has been the largest limitation for rice (Oryza sativa L) production in XA, SJ and CB. Projected climate change is expected to be beneficial for expanding the crop growing season, and to provide more suitable conditions for sowing and harvest. Autumn frost will occur later in most parts of NFR, and chilling damage will also decrease, particularly for rice production in XA and SJ. Drought and heat stress are expected to become more severe for maize and soybean production in most parts of NFR. Also, plant diseases, pests and weeds are considered to become more severe for crop production under climate change. Adaptation measures that have already been implemented in recent decades to cope with current climatic limitations include changes in timing of cultivation, variety choice, soil tillage practices, crop protection, irrigation and use of plastic film for soil cover. With the projected climate change and increasing risk of climatic extremes, additional adaptation measures will become relevant for sustaining and improving productivity of crops in NFR to ensure food security in China. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4772  
Permanent link to this record
 

 
Author Sánchez, B.; Rasmussen, A.; Porter, J.R. doi  openurl
  Title Temperatures and the growth and development of maize and rice: a review Type Journal Article
  Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 20 Issue 2 Pages 408-417  
  Keywords (down) Climate Change; Oryza/*growth & development; Temperature; Zea mays/*growth & development; cardinal temperatures; climatic change impacts; development; growth; lethal temperatures; maize; rice  
  Abstract Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this study, we have identified rice and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize, complementing an earlier study on wheat. Lethal temperatures and cardinal temperatures, together with error estimates, have been identified for phenological phases and development stages. Following the methodology of previous work, we have collected and statistically analysed temperature thresholds of the three crops for the key physiological processes such as leaf initiation, shoot growth and root growth and for the most susceptible phenological phases such as sowing to emergence, anthesis and grain filling. Our summary shows that cardinal temperatures are conservative between studies and are seemingly well defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur, IPCC-AR5 Approved no  
  Call Number MA @ admin @ Serial 4693  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: