toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Köchy, M. url  openurl
  Title FACCE MACSUR: Modelling Agriculture with Climate Change for Food Security Type Conference Article
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down) Hub  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Climate-smart agriculture 2015. Global Science Conference. Montpellier, France, 2015-03-15 to 2015-03-18  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2551  
Permanent link to this record
 

 
Author Köchy, M.; Aberton, M.; Bannink, A.; Banse, M.; Brouwer, F.; Brüser, K.; Ewert, F.; Foyer, C.; Jorgenson, J.S.; Kipling, R.; Meijs, J.; Rötter, R.; Scollan, N.; Sinabell, F.; Tiffin, R.; van den Pol-van Dasselaar, A. url  openurl
  Title MACSUR — Summary of research results, phase 1: 2012-2015 Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-H3.3  
  Keywords (down) Hub  
  Abstract MACSUR — Modelling European Agriculture with Climate Change for Food Security — is a  knowledge hub that was formally created in June 2012 as a European scientific network.  The strategic aim of the knowledge hub is to create a coordinated and globally visible  network of European researchers and research groups, with intra- and interdisciplinary  interaction and shared expertise creating synergies for the development of scientific  resources (data, models, methods) to model the impacts of climate change on agriculture  and related issues. This objective encompasses a wide range of political and sociological  aspects, as well as the technical development of modelling capacity through impact  assessments at different scales and assessing uncertainties in model outcomes. We achieve  this through model intercomparisons and model improvements, harmonization and  exchange of data sets, training in the selection and use of models, assessment of benefits  of ensemble modelling, and cross-disciplinary linkages of models and tools. The project  engages with a diverse range of stakeholder groups and to support the development of  resources for capacity building of individuals and countries. Commensurate with this broad  challenge, a network of currently 300 scientists (measured by the number of individuals on  the central e-mail list) from 18 countries evolved from the original set of research groups  selected by FACCE.   In the spirit of creating and maintaining a network for intra- and interdisciplinary  knowledge exchange, network activities focused on meetings of researchers for sharing  expertise and, depending on group resources (both financial and personnel), development  of collaborative research activities. The outcome of these activities is the enhanced  knowledge of the individual researchers within the network, contributions to conference  presentations and scholarly papers, input to stakeholders and the general public, organised  courses for students, junior and senior scientists. The most visible outcome are the  scientific results of the network activities, represented in the contributions of MACSUR  members to the impressive number of more than 200 collaborative papers in peer-reviewed  publications.   Here, we present a selection of overview and cross-disciplinary papers which include  contributions from MACSUR members. It highlights the major scientific challenges  addressed, and the methodological solutions and insights obtained. Over and above these  highlights, major achievements have been reached regarding data collection, data  processing, evaluation, model testing, modelling assessments of the effects of agriculture  on ecosystem services, policy, and development of scenarios. Details on these  achievements in the context of MACSUR can be found in our online publication FACCE  MACSUR Reports at http://ojs.macsur.eu.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2086  
Permanent link to this record
 

 
Author Eyshi Rezaei, E.; Webber, H.; Gaiser, T.; Naab, J.; Ewert, F. url  doi
openurl 
  Title Heat stress in cereals: Mechanisms and modelling Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 64 Issue Pages 98-113  
  Keywords (down) high temperature; heat stress; cereal yield; climate change impact; crop modelling; high-temperature stress; tropical maize hybrids; triticum-aestivum l; high-yielding rice; induced spikelet sterility; stem reserve mobilization; climate-change impacts; oryza-sativa l.; grain-yield; kernel set  
  Abstract Increased climate variability and higher mean temperatures are expected across many world regions, both of which will contribute to more frequent extreme high temperatures events. Empirical evidence increasingly shows that short episodes of high temperature experienced around flowering can have large negative impacts on cereal grain yields, a phenomenon increasingly referred to as heat stress. Crop models are currently the best tools available to investigate how crops will grow under future climatic conditions, though the need to include heat stress effects has been recognized only relatively recently. We reviewed literature on both how key crop physiological processes and the observed yields under production conditions are impacted by high temperatures occurring particularly in the flowering and grain filling phases for wheat, maize and rice. This state of the art in crop response to heat stress was then contrasted with generic approaches to simulate the impacts of high temperatures in crop growth models. We found that the observed impacts of heat stress on crop yield are the end result of the integration of many processes, not all of which will be affected by a “high temperature” regime. This complexity confirms an important role for crop models in systematizing the effects of high temperatures on many processes under a range of environments and realizations of crop phenology. Four generic approaches to simulate high temperature impacts on yield were identified: (1) empirical reduction of final yield, (2) empirical reduction in daily increment in harvest index, (3) empirical reduction in grain number, and (4) semi-deterministic models of sink and source limitation. Consideration of canopy temperature is suggested as a promising approach to concurrently account for heat and drought stress, which are likely to occur simultaneously. Improving crop models’ response to high temperature impacts on cereal yields will require experimental data representative of field production and should be designed to connect what is already known about physiological responses and observed yield impacts. (C) 2014 Elsevier B.V. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4741  
Permanent link to this record
 

 
Author Doltra, J.; Olesen, J.E.; Báez, D.; Louro, A.; Chirinda, N. url  doi
openurl 
  Title Modeling nitrous oxide emissions from organic and conventional cereal-based cropping systems under different management, soil and climate factors Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 66 Issue Pages 8-20  
  Keywords (down) greenhouse gas emissions; nitrogen losses; fasset process-based model; mitigation; crop management; n2o emissions; agricultural soils; cover crops; simulation; matter; wheat; uncertainty; variability; fertilizer; rotation  
  Abstract Mitigation of greenhouse gas emissions from agriculture should be assessed across cropping systems and agroclimatic regions. In this study, we investigate the ability of the FASSET model to analyze differences in the magnitude of N2O emissions due to soil, climate and management factors in cereal-based cropping systems. Forage maize was grown in a conventional dairy system at Mabegondo (NW Spain) and wheat and barley in organic and conventional crop rotations at Foulum (NW Denmark). These two European sites represent agricultural areas with high and low to moderate emission levels, respectively. Field trials included plots with and without catch crops that were fertilized with either mineral N fertilizer, cattle slurry, pig slurry or digested manure. Non-fertilized treatments were also included. Measurements of N2O fluxes during the growing cycle of all the crops at both sites were performed with the static chamber method with more frequent measurements post-fertilization and biweekly measurements when high fluxes were not expected. All cropping systems were simulated with the FASSET version 2.5 simulation model. Cumulative soil seasonal N2O emissions were about ten-fold higher at Mabegondo than at Foulum when averaged across systems and treatments (8.99 and 0.71 kg N2O-N ha(-1), respectively). The average simulated cumulative soil N2O emissions were 9.03 and 1.71 kg N2O-N ha(-1) at Mabegondo and at Foulum, respectively. Fertilization, catch crops and cropping systems had lower influence on the seasonal soil N2O fluxes than the environmental factors. Overall, in its current version FASSET reproduced the effects of the different factors investigated on the cumulative seasonal soil N2O emissions but temporally it overestimated emissions from nitrification and denitrification on particular days when soil operations, ploughing or fertilization, took place. The errors associated with simulated daily soil N2O fluxes increased with the magnitude of the emissions. For resolving causes of differences in simulated and measured fluxes more intensive and temporally detailed measurements of N2O fluxes and soil C and N dynamics would be needed. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4748  
Permanent link to this record
 

 
Author Sándor, R.; Ma, S.; Acutis, M.; Barcza, Z.; Ben Touhami, H.; Doro, L.; Hidy, D.; Köchy, M.; Lellei-Kovács, E.; Minet, J.; Perego, A.; Rolinski, S.; Ruget, F.; Seddaiu, G.; Wu, L.; Bellocchi, G. url  doi
openurl 
  Title Uncertainty in simulating biomass yield and carbon–water fluxes from grasslands under climate change Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue 01 Pages 49-51  
  Keywords (down) grassland productivity; carbon balance; model simulation; uncertainty; sensitivity  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-4700 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4651  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: