toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ruiz-Ramos, M.; Ferrise, R.; Rodriguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Hoehn, J.G.; Jurecka, F.; Kersebaum, K.C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Roetter, R.P. doi  openurl
  Title Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment Type Journal Article
  Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 260-274  
  Keywords (down) Wheat adaptation; Sensitivity analysis; Crop model ensemble; Rainfed, Mediterranean cropping system; AOCK concept; Iberian Peninsula; Simulation-Model; Change Impacts; Crop; Uncertainty; Ensemble; Europe; Yield; Productivity; Irrigation  
  Abstract Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T.),[CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5184  
Permanent link to this record
 

 
Author Tao, F.; Roetter, R.P.; Palosuo, T.; Diaz-Ambrona, C.G.H.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Cammarano, D.; Hoffmann, H.; Ewert, F.; Dambreville, A.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Ferrise, R.; Bindi, M.; Schulman, A.H. doi  openurl
  Title Designing future barley ideotypes using a crop model ensemble Type Journal Article
  Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 82 Issue Pages 144-162  
  Keywords (down) Water-Use Efficiency; Climate-Change; Nitrogen Dynamics; Systems; Simulation; Wheat Cultivars; Grain Weight; Yield; Growth; Fertilization; Adaptation; Adaptation; Breeding; Climate change; Crop simulation models; Impact; Genotype; Genetic traits  
  Abstract Climate change and its associated higher frequency and severity of adverse weather events require genotypic adaptation. Process-based ecophysiological modelling offers a powerful means to better target and accelerate development of new crop cultivars. Barley (Hordeum vulgare L) is an important crop throughout the world, and a good model for study of the genetics of stress adaptation because many quantitative trait loci and candidate genes for biotic and abiotic stress tolerance have been identified in it. Here, we developed a new approach to design future crop ideotypes using an ensemble of eight barley simulation models (i.e. APSIM, CropSyst, HERMES, MCWLA, MONICA, SIMPLACE, Sirius Quality, and WOFOST), and applied it to design climate-resilient barley ideotypes for Boreal and Mediterranean climatic zones in Europe. The results showed that specific barley genotypes, represented by sets of cultivar parameters in the crop models, could be promising under future climate change conditions, resulting in increased yields and low inter-annual yield variability. In contrast, other genotypes could result in substantial yield declines. The most favorable climate-zone-specific barley ideotypes were further proposed, having combinations of several key genetic traits in terms of phenology, leaf growth, photosynthesis, drought tolerance, and grain formation. For both Boreal and Mediterranean climatic zones, barley ideotypes under future climatic conditions should have a longer reproductive growing period, lower leaf senescence rate, larger radiation use efficiency or maximum assimilation rate, and higher drought tolerance. Such characteristics can produce substantial positive impacts on yields under contrasting conditions. Moreover, barley ideotypes should have a low photoperiod and high vernalization sensitivity for the Boreal climatic zone; for the Mediterranean, in contrast, it should have a low photoperiod and low vernalization sensitivity. The drought-tolerance trait is more beneficial for the Mediterranean than for the Boreal climatic zone. Our study demonstrates a sound approach to design future barley ideotypes based on an ensemble of well-tested, diverse crop models and on integration of knowledge from multiple disciplines. The robustness of model-aided ideotypes design can be further enhanced by continuously improving crop models and enhancing information exchange between modellers, agro-meteorologists, geneticists, physiologists, and plant breeders. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2017-01-20  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4935  
Permanent link to this record
 

 
Author Andreoli, V.; Cassardo, C.; Iacona, L.T.; Spanna, F. doi  openurl
  Title Description and Preliminary Simulations with the Italian Vineyard Integrated Numerical Model for Estimating Physiological Values (IVINE) Type Journal Article
  Year 2019 Publication Agronomy Abbreviated Journal Agronomy  
  Volume 9 Issue 2 Pages  
  Keywords (down) viticulture; crop model; phenology; physiological processes; climate; micrometeorology; microclimate; climate change; water status; balance model; crop; phenology; growth; STICS; implementation; carbon; yield  
  Abstract The numerical crop growth model Italian Vineyard Integrated Numerical model for Estimating physiological values (IVINE) was developed in order to evaluate environmental forcing effects on vine growth. The IVINE model simulates vine growth processes with parameterizations, allowing the understanding of plant conditions at a vineyard scale. It requires a set of meteorology data and soil water status as boundary conditions. The primary model outputs are main phenological stages, leaf development, yield, and sugar concentration. The model requires setting some variety information depending on the cultivar: At present, IVINE is optimized for Vitis vinifera L. Nebbiolo, a variety grown mostly in the Piedmont region (northwestern Italy). In order to evaluate the model accuracy, IVINE was validated using experimental observations gathered in Piedmontese vineyards, showing performances similar or slightly better than those of other widely used crop models. The results of a sensitivity analysis performed to highlight the effects of the variations of air temperature and soil water potential input variables on IVINE outputs showed that most phenological stages anticipated with increasing temperatures, while berry sugar content saturated at about 25.5 °Bx. Long-term (60 years, in the period 1950–2009) simulations performed over a Piedmontese subregion showed statistically significant variations of most IVINE output variables, with larger time trend slopes referring to the most recent 30-year period (1980–2009), thus confirming that ongoing climate change started influencing Piedmontese vineyards in 1980.  
  Address 2019-02-21  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4395 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5218  
Permanent link to this record
 

 
Author Biewald, A.; Rolinski, S.; Lotze-Campen, H.; Schmitz, C.; Dietrich, J.P. url  doi
openurl 
  Title Valuing the impact of trade on local blue water Type Journal Article
  Year 2014 Publication Ecological Economics Abbreviated Journal Ecol. Econ.  
  Volume 101 Issue Pages 43-53  
  Keywords (down) virtual water; blue and green water; water scarcity; agricultural trade; global vegetation model; virtual water; crop trade; resources; scarcity; food; footprints; products; flows; green  
  Abstract International trade of agricultural goods impacts local water scarcity. By quantifying the effect of trade on crop production on grid-cell level and combining it with cell- and crop-specific virtual water contents, we are able to determine green and blue water consumption and savings. Connecting the information on trade-related blue water usage to water shadow prices gives us the possibility to value the impact of international food crop trade on local blue water resources. To determine the trade-related value of the blue water usage, we employ two models: first, an economic land- and water-use model, simulating agricultural trade, production and water-shadow prices and second, a global vegetation and agricultural model, modeling the blue and green virtual water content of the traded crops. Our study found that globally, the international trade of food crops saves blue water worth 2.4 billion US$. This net saving occurs despite the fact that Europe exports virtual blue water in food crops worth 3.1 billion US$. Countries in the Middle East and South Asia profit from trade by importing water intensive crops, countries in Southern Europe on the other hand export water intensive agricultural goods from water scarce sites, deteriorating local water scarcity. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4512  
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S. url  doi
openurl 
  Title Crop modelling for integrated assessment of risk to food production from climate change Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 72 Issue Pages 287-303  
  Keywords (down) uncertainty; scaling; integrated assessment; risk assessment; adaptation; crop models; agricultural land-use; change adaptation strategies; farming systems simulation; agri-environmental systems; enrichment face experiment; high-temperature stress; change impacts; nitrogen dynamics; atmospheric co2; spring wheat  
  Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4521  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: