toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mitter, H.; Techen, A.-K.; Sinabell, F.; Helming, K.; Kok, K.; Priess, J.A.; Schmid, E.; Bodirsky, B.L.; Holman, I.; Lehtonen, H.; Leip, A.; Le Mouel, C.; Mathijs, E.; Mehdi, B.; Michetti, M.; Mittenzwei, K.; Mora, O.; Oygarden, L.; Reidsma, P.; Schaldach, R.; Schoenhart, M. doi  openurl
  Title A protocol to develop Shared Socio-economic Pathways for European agriculture Type Journal Article
  Year 2019 Publication Journal of Environmental Management Abbreviated Journal J. Environ. Manage.  
  Volume 252 Issue Pages Unsp 109701  
  Keywords (down) EUR-Agri-SSP; Consistent storylines; Narrative; Integrated assessment; Social environmental system; Climate change; land-use change; global environmental-change; climate-change; scenario; development; transdisciplinary research; sustainability science; integrated-assessment; future; adaptation; framework  
  Abstract Moving towards a more sustainable future requires concerted actions, particularly in the context of global climate change. Integrated assessments of agricultural systems (IAAS) are considered valuable tools to provide sound information for policy and decision-making. IAAS use storylines to define socio-economic and environmental framework assumptions. While a set of qualitative global storylines, known as the Shared Socio-economic Pathways (SSPs), is available to inform integrated assessments at large scales, their spatial resolution and scope is insufficient for regional studies in agriculture. We present a protocol to operationalize the development of Shared Socio-economic Pathways for European agriculture – Eur-Agri-SSPs- to support IAAS. The proposed design of the storyline development process is based on six quality criteria: plausibility, vertical and horizontal consistency, salience, legitimacy, richness and creativity. Trade-offs between these criteria may occur. The process is science-driven and iterative to enhance plausibility and horizontal consistency. A nested approach is suggested to link storylines across scales while maintaining vertical consistency. Plausibility, legitimacy, salience, richness and creativity shall be stimulated in a participatory and interdisciplinary storyline development process. The quality criteria and process design requirements are combined in the protocol to increase conceptual and methodological transparency. The protocol specifies nine working steps. For each step, suitable methods are proposed and the intended level and format of stakeholder engagement are discussed. A key methodological challenge is to link global SSPs with regional perspectives provided by the stakeholders, while maintaining vertical consistency and stakeholder buy-in. We conclude that the protocol facilitates systematic development and evaluation of storylines, which can be transferred to other regions, sectors and scales and supports intercomparisons of IAAS.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5222  
Permanent link to this record
 

 
Author Lotze-Campen, H.; von Lampe, M.; Kyle, P.; Fujimori, S.; Havlik, P.; van Meijl, H.; Hasegawa, T.; Popp, A.; Schmitz, C.; Tabeau, A.; Valin, H.; Willenbockel, D.; Wise, M. url  doi
openurl 
  Title Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison Type Journal Article
  Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.  
  Volume 45 Issue 1 Pages 103-116  
  Keywords (down) energy demand; agricultural markets; general equilibrium modeling; partial equilibrium modeling; model comparison; greenhouse-gas emissions; land-use; energy; productivity; scenarios; policies; capture; storage; system  
  Abstract Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Intercomparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, for example, from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an ambitious mitigation scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in a high-emission scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5150 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4532  
Permanent link to this record
 

 
Author Francone, C.; Cassardo, C.; Richiardone, R.; Confalonieri, R. url  doi
openurl 
  Title Sensitivity Analysis and Investigation of the Behaviour of the UTOPIA Land-Surface Process Model: A Case Study for Vineyards in Northern Italy Type Journal Article
  Year 2012 Publication Boundary-Layer Meteorology Abbreviated Journal Boundary-Layer Meteorology  
  Volume 144 Issue 3 Pages 419-430  
  Keywords (down) energy balance; hydrological balance; land-surface model; morris method; vegetation cover; vitis vinifera l.; atmosphere transfer scheme; environmental-models; energy-balance; uncertainty; simulation; canopy  
  Abstract We used sensitivity-analysis techniques to investigate the behaviour of the land-surface model UTOPIA while simulating the micrometeorology of a typical northern Italy vineyard (Vitis vinifera L.) under average climatic conditions. Sensitivity-analysis experiments were performed by sampling the vegetation parameter hyperspace using the Morris method and quantifying the parameter relevance across a wide range of soil conditions. This method was used since it proved its suitability for models with high computational time or with a large number of parameters, in a variety of studies performed on different types of biophysical models. The impact of input variability was estimated on reference model variables selected among energy (e.g. net radiation, sensible and latent heat fluxes) and hydrological (e.g. soilmoisture, surface runoff, drainage) budget components. Maximum vegetation cover and maximum leaf area index were ranked as the most relevant parameters, with sensitivity indices exceeding the remaining parameters by about one order of magnitude. Soil variability had a high impact on the relevance of most of the vegetation parameters: coefficients of variation calculated on the sensitivity indices estimated for the different soils often exceeded 100 %. The only exceptions were represented by maximum vegetation cover and maximum leaf area index, which showed a low variability in sensitivity indices while changing soil type, and confirmed their key role in affecting model results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8314 1573-1472 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4470  
Permanent link to this record
 

 
Author Fan, F.; Henriksen, C.B.; Porter, J. doi  openurl
  Title Relationship between stoichiometry and ecosystem services: A case study of it organic farming systems Type Journal Article
  Year 2018 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 85 Issue Pages 400-408  
  Keywords (down) Ecosystem services; Organic farming; Stoichiometry; Field practices; Soil Carbon Storage; Ecological Stoichiometry; Agricultural Management; Earthworm Populations; Nitrogen-Fixation; Cropping Systems; New-Zealand; Quantification; Valuation; Matter  
  Abstract Over the past five decades, the delivery of global Ecosystem Services (ES) has diminished and this has been driven partly by anthropogenic activities. Agro-ecosystems cover almost 40% of the terrestrial surface on Earth, and have been considered as one of the most significant ecological experiments with a potential to both contribute to and mitigate global ES loss. In the present study, six different ES (food and fodder production, carbon sequestration, biological pest control, soil water storage, nitrogen regulation and soil formation) were quantified in various organic farming systems and the hypothesis that there is a link between these ES and C:N, C:O and H:O stoichiometric ratios in farming systems was experimentally tested. The results show that different ES are correlated with the stoichiometric ratios to different extents. There are significant positive linear correlations between C:N stoichiometric ratios and all measured ES in the investigated organic farming systems, while not all the ES are correlated with the C:O and H:O ratios. This study has expanded the horizons of stoichiometry by linking a fundamental chemical property of molecules with an emergent property of organic farming systems, namely their ecosystem service provision.  
  Address 2018-06-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470-160x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5201  
Permanent link to this record
 

 
Author Francioni, M.; D’Ottavio, P.; Lai, R.; Trozzo, L.; Budimir, K.; Foresi, L.; Kishimoto-Mo, A.W.; Baldoni, N.; Allegrezza, M.; Tesei, G.; Toderi, M. doi  openurl
  Title Seasonal Soil Respiration Dynamics and Carbon-Stock Variations in Mountain Permanent Grasslands Compared to Arable Lands Type Journal Article
  Year 2019 Publication Agriculture-Basel Abbreviated Journal Agriculture-Basel  
  Volume 9 Issue 8 Pages 165  
  Keywords (down) ecosystem services; C stock; CO2; GHG; land use change; Q(10); temperature; vegetation; patterns; emissions; climate  
  Abstract Permanent grasslands provide a wide array of ecosystem services. Despite this, few studies have investigated grassland carbon (C) dynamics, and especially those related to the effects of land-use changes. This study aimed to determine whether the land-use change from permanent grassland to arable lands resulted in variations in the soil C stock, and whether such variations were due to increased soil respiration or to management practices. To address this, seasonal variations of soil respiration, sensitivity of soil respiration to soil temperature (Q(10)), and soil C stock variations generated by land-use changes were analyzed in a temperate mountain area of central Italy. The comparisons were performed for a permanent grassland and two adjacent fields, one cultivated with lentil and the other with emmer, during the 2015 crop year. Soil respiration and its heterotrophic component showed different spatial and temporal dynamics. Annual cumulative soil respiration rates were 6.05, 5.05 and 3.99 t C ha(-1) year(-1) for grassland, lentil and emmer, respectively. Both soil respiration and heterotrophic soil respiration were positively correlated with soil temperature at 10 cm depth. Derived Q(10) values were from 2.23 to 6.05 for soil respiration, and from 1.82 to 4.06 for heterotrophic respiration. Soil C stock at over 0.2 m in depth was 93.56, 48.74 and 46.80 t C ha(-1) for grassland, lentil and emmer, respectively. The land-use changes from permanent grassland to arable land lead to depletion in terms of the soil C stock due to water soil erosion. A more general evaluation appears necessary to determine the multiple effects of this land-use change at the landscape scale.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5229  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: