|   | 
Details
   web
Records
Author Hutchings, N.J.; Özkan Gülzari, Ş.; de Haan, M.; Sandars, D.
Title How do farm models compare when estimating greenhouse gas emissions from dairy cattle production Type Journal Article
Year 2018 Publication Animal Abbreviated Journal Animal
Volume 12 Issue 10 Pages 2171-2180
Keywords (up) dairy cattle; farm-scale; model; greenhouse gas; Future Climate Scenarios; Systems-Analysis; Milk-Production; Crop; Production; Mitigation; Intensity; Impacts
Abstract The European Union Effort Sharing Regulation (ESR) will require a 30% reduction in greenhouse gas (GHG) emissions by 2030 compared with 2005 from the sectors not included in the European Emissions Trading Scheme, including agriculture. This will require the estimation of current and future emissions from agriculture, including dairy cattle production systems. Using a farm-scale model as part of a Tier 3 method for farm to national scales provides a more holistic and informative approach than IPCC (2006) Tier 2 but requires independent quality control. Comparing the results of using models to simulate a range of scenarios that explore an appropriate range of biophysical and management situations can support this process by providing a framework for placing model results in context. To assess the variation between models and the process of understanding differences, estimates of GHG emissions from four farm-scale models (DailyWise, FarmAC, HolosNor and SFARMMOD) were calculated for eight dairy farming scenarios within a factorial design consisting of two climates (cool/dry and warm/wet) x two soil types (sandy and clayey) x two feeding systems (grass only and grass/maize). The milk yield per cow, follower cow ratio, manure management system, nitrogen (N) fertilisation and land area were standardised for all scenarios in order to associate the differences in the results with the model structure and function. Potential yield and application of available N in fertiliser and manure were specified separately for grass and maize. Significant differences between models were found in GHG emissions at the farm-scale and for most contributory sources, although there was no difference in the ranking of source magnitudes. The farm-scale GHG emissions, averaged over the four models, was 10.6 t carbon dioxide equivalents (CO(2)e)/ha per year, with a range of 1.9 t CO(2)e/ha per year. Even though key production characteristics were specified in the scenarios, there were still significant differences between models in the annual milk production per ha and the amounts of N fertiliser and concentrate feed imported. This was because the models differed in their description of biophysical responses and feedback mechanisms, and in the extent to which management functions were internalised. We conclude that comparing the results of different farm-scale models when applied to a range of scenarios would build confidence in their use in achieving ESR targets, justifying further investment in the development of a wider range of scenarios and software tools.
Address 2019-01-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-7311 ISBN Medium
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5212
Permanent link to this record
 

 
Author Dono, G.; Raffaele, C.; Luca, G.; Roggero, P.P.
Title Income Impacts of Climate Change: Irrigated Farming in the Mediterranean and Expected Changes in Probability of Favorable and Adverse Weather Conditions Type Journal Article
Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics
Volume 63 Issue 3 Pages 177-186
Keywords (up) discrete stochastic programming; rdp measures to adapt to climate change; economic impact of climate change; irrigated agriculture and climate change; insurance tools for adaptation to climate change; water markets; risk; variability; management; systems
Abstract EU rural development policy (RDP) regulation 1305/2013 aims to protect farmers’ incomes from ongoing change of climate variability (CCV), and the increase in frequency of adverse climatic events. An income stabilization tool (IST) is provided to compensate drastic drops in income, including those caused by climatic events. The present study examines some aspect of its application focussing on Mediterranean irrigation area where frequent water shortages may generate significant income reductions in the current climate conditions, and may be further exacerbated by climate change. This enhanced loss of income in the future would occur due to a change in climate variability. This change would appreciably reduce the probability of weather conditions that are favourable for irrigation, but would not significantly increase either the probability of unfavourable weather conditions or the magnitude of their impact. As the IST and other insurance tools that protect against adversity and catastrophic events are only activated under extreme conditions, farmers may not consider them to be suitable in dealing with the new climate regime. This would leave a portion of the financial resources allocated by the RDP unused, resulting in less support for climate change adaptation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-1121 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4669
Permanent link to this record
 

 
Author Toscano, P.; Ranieri, R.; Matese, A.; Vaccari, F.P.; Gioli, B.; Zaldei, A.; Silvestri, M.; Ronchi, C.; La Cava, P.; Porter, J.R.; Miglietta, F.
Title Durum wheat modeling: The Delphi system, 11 years of observations in Italy Type Journal Article
Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 43 Issue Pages 108-118
Keywords (up) durum wheat; crop modeling; yield forecasting; calibration; scenarios; decision-support-system; crop simulation-model; ceres-wheat; mediterranean environment; winter-wheat; scaling-up; variability; quality; growth; water
Abstract ► Delphi system, based on AFRCWHEAT2 model, for durum wheat forecast. ► AFRCWHEAT2 model was calibrated and validated for three years. ► A scenario approach was applied to simulation of durum wheat yield. ► Operational mode for eleven years in rainfed and water limiting conditions. ► Accurate forecast as an useful planning tool. Crop models are frequently used in ecology, agronomy and environmental sciences for simulating crop and environmental variables at a discrete time step. The aim of this work was to test the predictive capacity of the Delphi system, calibrated and determined for each pedoclimatic factor affecting durum wheat during phenological development. at regional scale. We present an innovative system capable of predicting spatial yield variation and temporal yield fluctuation in long-term analysis, that are the main purposes of regional crop simulation study. The Delphi system was applied to simulate growth and yield of durum wheat in the major Italian supply basins (Basilicata, Capitanata, Marche, Tuscany). The model was validated and evaluated for three years (1995-1997) at 11 experimental fields and then used in operational mode for eleven years (1999-2009), showing an excellent/good accuracy in predicting grain yield even before maturity for a wide range of growing conditions in the Mediterranean climate, governed by different annual weather patterns. The results were evaluated on the basis of regression and normalized root mean squared error with known crop yield statistics at regional level. (c) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4596
Permanent link to this record
 

 
Author Ghaley, B.B.; Porter, J.R.; Sandhu, H.S.
Title Soil-based ecosystem services: a synthesis of nutrient cycling and carbon sequestration assessment methods Type Journal Article
Year 2014 Publication International Journal of Biodiversity Science, Ecosystem Services & Management Abbreviated Journal International Journal of Biodiversity Science, Ecosystem Services & Management
Volume 10 Issue 3 Pages 177-186
Keywords (up) ecosystem functions; litter decomposition; mineralisation; assessment methodologies; stoichiometry
Abstract Among the soil-based ecosystem services (ES), nutrient cycling and carbon sequestration have direct influence on the biogeochemical cycles and greenhouse gas emissions affecting provision of other ES that support human existence. We reviewed methods to assess the two key ES by identifying their strengths and weaknesses and have made suggestions for using appropriate methods for better understanding of the ecosystem functions for the provision of ES. Relevant papers for the review were chosen on the basis of (i) diversity of studies on the two key ES in different ecosystems, (ii) methodologies applied and (iii) detailed descriptions of the trial locations in terms of vegetation, soil type, location and climatic information. We concluded that (i) elemental stoichiometrical ratios could be a potential approach to assess the health of ecosystems in terms of provision of the two ES discussed, (ii) stoichiometric imbalances need to be avoided between the supply and the demand of the nutrients to maintain the ES provision in terrestrial ecosystems and (iii) stoichiometric ratios can act as a management tool at a field, farm and at landscape level, to complement other compositional biodiversity and functional diversity approaches to ensure sustainable provision of ES.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2151-3732 2151-3740 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4522
Permanent link to this record
 

 
Author Francioni, M.; D’Ottavio, P.; Lai, R.; Trozzo, L.; Budimir, K.; Foresi, L.; Kishimoto-Mo, A.W.; Baldoni, N.; Allegrezza, M.; Tesei, G.; Toderi, M.
Title Seasonal Soil Respiration Dynamics and Carbon-Stock Variations in Mountain Permanent Grasslands Compared to Arable Lands Type Journal Article
Year 2019 Publication Agriculture-Basel Abbreviated Journal Agriculture-Basel
Volume 9 Issue 8 Pages 165
Keywords (up) ecosystem services; C stock; CO2; GHG; land use change; Q(10); temperature; vegetation; patterns; emissions; climate
Abstract Permanent grasslands provide a wide array of ecosystem services. Despite this, few studies have investigated grassland carbon (C) dynamics, and especially those related to the effects of land-use changes. This study aimed to determine whether the land-use change from permanent grassland to arable lands resulted in variations in the soil C stock, and whether such variations were due to increased soil respiration or to management practices. To address this, seasonal variations of soil respiration, sensitivity of soil respiration to soil temperature (Q(10)), and soil C stock variations generated by land-use changes were analyzed in a temperate mountain area of central Italy. The comparisons were performed for a permanent grassland and two adjacent fields, one cultivated with lentil and the other with emmer, during the 2015 crop year. Soil respiration and its heterotrophic component showed different spatial and temporal dynamics. Annual cumulative soil respiration rates were 6.05, 5.05 and 3.99 t C ha(-1) year(-1) for grassland, lentil and emmer, respectively. Both soil respiration and heterotrophic soil respiration were positively correlated with soil temperature at 10 cm depth. Derived Q(10) values were from 2.23 to 6.05 for soil respiration, and from 1.82 to 4.06 for heterotrophic respiration. Soil C stock at over 0.2 m in depth was 93.56, 48.74 and 46.80 t C ha(-1) for grassland, lentil and emmer, respectively. The land-use changes from permanent grassland to arable land lead to depletion in terms of the soil C stock due to water soil erosion. A more general evaluation appears necessary to determine the multiple effects of this land-use change at the landscape scale.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5229
Permanent link to this record