|   | 
Details
   web
Records
Author Lizaso, J.I.; Ruiz-Ramos, M.; Rodriguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Rodriguez, A.; Maddonni, G.A.; Otegui, M.E.
Title Modeling the response of maize phenology, kernel set, and yield components to heat stress and heat shock with CSM-IXIM Type Journal Article
Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 214 Issue Pages 239-252
Keywords (up) Heat stress, Maize; CSM-IXIM; CSM-CERES-maize; Beta function; CERES-MAIZE; DEVELOPMENTAL PROCESSES; TEMPERATURE RESPONSES; CROSS-VALIDATION; GRAIN-SORGHUM; GROWTH; SIMULATION; PLANTS; SENESCENCE; NITROGEN
Abstract The available evidence suggests that the current increasing trend in global surface temperatures will continue during this century, which will be accompanied by a greater frequency of extreme events. The IPCC has projected that higher temperatures may outscore the known optimal and maximum temperatures for maize. The purpose of this study was to improve the ability of the maize model CSM-IXIM to simulate crop development, growth, and yield under hot conditions, especially with regards to the impact of above-optimal temperatures around anthesis. Field and greenhouse experiments that were performed over three years (2014-2016) using the same short-season hybrid, PR37N01 (FAO 300), provided the data for this work. Maize was sown at a target population density of 5 plants M-2 on two sowing dates in 2014 and 2015 and on one in 2016 at three locations in Spain (northern, central, and southern Spain) with a well-defined thermal gradient. The same hybrid was also sown in two greenhouse chambers with daytime target temperatures of approximately 25 and above 35 degrees C. During the nighttime, the temperature in both chambers was allowed to equilibrate with the outside temperature. The greenhouse treatments consisted of moving 18 plants at selected phenological stages (V4, V9, anthesis, lag phase, early grain filling) from the cool chamber to the hot chamber over a week and then returning the plants back to the cool chamber. An additional control treatment remained in the cool chamber all season, and in 2015 and 2016, one treatment remained permanently in the hot chamber. Two maize models in the Decision Support System for Agrotechnology Transfer (DSSAT) V4.6 were compared, namely CERES and IXIM. The HUM version included additional components that were previously developed to improve the crop N simulation and to incorporate the anthesis-silking interval (ASI). A new thermal time calculation, a heat stress index, the impact of pollen-sterilizing temperatures, and the explicit simulation of male and female flowering as affected by the daily heat conditions were added to IXIM. The phenology simulation in field experiments by IXIM improved substantially. The RMSE for silking and maturity in CERES were 7.9 and 13.7 days, decreasing in DCIM to 2.8 and 7.3 days, respectively. Similarly, the estimated kernel numbers, kernel weight, grain yield and final biomass were always closer to the measurements in HUM than in CERES. The worst simulations were for kernel weight, and for that reason, the differences in grain yield between the models were small (the RMSE in CERES was 1219 kg ha(-1) vs. 1082 kg ha(-1) in IXIM). The greenhouse results also supported the improved estimations of crop development by IXIM (RMSE of 2.6 days) relative to CERES (7.4 days). The impact of the heat treatments on grain yield was consistently overestimated by CERES, while HUM captured the general trend. The new HUM model improved the CERES simulations when elevated temperatures were included in the evaluation data. Additional model testing with measurements from a wider latitudinal range and relevant heat conditions are required.
Address 2017-11-24
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5180
Permanent link to this record
 

 
Author De Pascale, S.; Maggio, A.; Orsini, F.; Stanghellini, C.; Heuvelink, E.
Title Growth response and radiation use efficiency in tomato exposed to short-term and long-term salinized soils Type Journal Article
Year 2015 Publication Scientia Horticulturae Abbreviated Journal Scientia Horticulturae
Volume 189 Issue Pages 139-149
Keywords (up) Leaf osmotic adjustment; Stomatal resistance; Leaf water potential; Light; Salt stress; RUE; physiological-response; salt tolerance; drought stress; water-use; yield; nitrogen; interception; productivity; leaf; photosynthesis
Abstract Farmlands are increasingly exposed to degradation phenomena associated to climate change and agricultural practices, including irrigation. It is estimated that about 20% of the world’s irrigated land is salt affected. In this paper we aimed at evaluating the effect of seasonal and multiannual soil satinization on growth, yield, and radiation use efficiency of tomato in open field. Two field experiments were carried out at the Experimental Station of the University of Naples Federico II (latitude 40 degrees 31’N longitude 14 degrees 58’E) (Italy) on tomato during 2004 and 2005 to study the effect of five levels of water salinity: NSC (EC = 0.5 dS m(-1)), SW1 (EC= 2.3 dS m(-1)), SW2 (EC= 4.4 dS m(-1)), SW3 (EC= 8.5 dS m(-1)) and SW4 (EC= 15.7 dS m(-1)) in a soil exposed to one-season salinization (ST = short-term) and an adjacent soil exposed to >20 years salinization (LT = long-term). Plant growth, yield and fruit quality (pH, EC, total soluble solids and the concentration of reducing sugars and of titratable acids), and plant water relations were measured and radiation use efficiency (RUE) was calculated. Increasing water salinity negatively affected the leaf area index (LAI), radiation use efficiency (RUE) and above-ground dry weight (DW) accumulation resulting in lower total and marketable yield. Maximum total and marketable yield obtained with the NSC treatment were respectively 117.9 and 111.0 Mg ha(-1) in 2004 and 113.1 and 107.9 Mg ha(-1) in 2005. Although the smaller leaf area of salinized plants was largely responsible for reduced RUE, we found approximately 50% of this reduction to be accounted for by processes other than changed crop architecture. These may include an increased stomatal resistance, increased mesophyll resistance and other impaired metabolic functions that may occur at high salinity. Remarkably, we found that LT salinized plants had a slightly better efficiency of use of intercepted radiation (RUEIR) at a given EC of soil extract than ST salinized plants indicating that LT salinization, and consequent permanent modifications of the soil physical properties, may trigger additional physiological mechanisms of adaptation compared to ST salinized plants. These differences are relevant in light of the evolution of salinized areas, also in response to climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4238 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4557
Permanent link to this record
 

 
Author Fan, F.; Henriksen, C.B.; Porter, J.
Title Long-term effects of conversion to organic farming on ecosystem services – a model simulation case study and on-farm case study in Denmark Type Journal Article
Year 2018 Publication Agroecology and Sustainable Food Systems Abbreviated Journal Agroecology and Sustainable Food Systems
Volume 42 Issue 5 Pages 504-529
Keywords (up) Long-term; conversion; economic value; ecosystem services; organic farming; agricultural policytrade-offs; Greenhouse-Gas Emissions; Former Arable Soils; Daisy Model; Crop; Production; Conventional Agriculture; Straw Incorporation; Production; Systems; Nitrogen Dynamics; Climate-Change; Water-Balance
Abstract Organic agriculture aims to produce food while establishing an ecological balance to augment ecosystem services (ES) and has been rapidly expanding in the world since the 1980s. Recently, however, in several European countries, including Denmark, organic farmers have converted back to conventional farming. Hence, understanding how agricultural ES are affected by the number of years since conversion to organic farming is imperative for policy makers to guide future agricultural policy. In order to investigate the long-term effects of conversion to organic farming on ES we performed i) a model simulation case study by applying the Daisy model to simulate 14 different conversion scenarios for a Danish farm during a 65 year period with increasing number of years under organic farming, and ii) an on-farm case study in Denmark with one conventional farm, one organic farm under conversion, and three organic farms converted 10, 15 and 58 years ago, respectively. Both the model simulation case study and the on-farm case study showed that non-marketable ES values increased with increasing number of years under organic farming. Trade-offs between marketable and non-marketable ES were not evident, since also marketable ES values generally showed an increasing trend, except when the price difference between organic and conventional products in the model simulation study was the smallest, and when an alfalfa pre-crop in the on-farm case study resulted in a significantly higher level of plant available nitrogen, which boosted the yield and the associated marketable ES of the subsequent winter rye crop. These results indicate a possible benefit of preserving long-term organic farms and could be used to argue for agricultural policy interventions to offset further reduction in the number of organic farms or the land area under organic farming.
Address 2018-05-03
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-3565 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5198
Permanent link to this record
 

 
Author Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G. de; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L.
Title Crop rotation modelling—A European model intercomparison Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 70 Issue Pages 98-111
Keywords (up) Model ensemble; Crop simulation models; Catch crop; Intermediate crop; Treatment; Multi-year; long-term experiment; climate-change; wheat production; n-fertilization; systems simulation; nitrogen dynamics; tillage intensity; winter-wheat; soil carbon; growth
Abstract • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.

Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4660
Permanent link to this record
 

 
Author Sanna, M.; Bellocchi, G.; Fumagalli, M.; Acutis, M.
Title A new method for analysing the interrelationship between performance indicators with an application to agrometeorological models Type Journal Article
Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 73 Issue Pages 286-304
Keywords (up) model evaluation; performance indicators; stable correlation; solar-radiation; simulation-model; environmental-models; statistical-methods; crop nitrogen; validation; rice; uncertainty; calibration; software
Abstract The use of a variety of metrics is advocated to assess model performance but correlated metrics may convey the same information, thus leading to redundancy. Starting from this assumption, a method was developed for selecting, from among a collection of performance indicators, one or more subsets providing the same information as the entire set. The method, based on the definition of “stable correlation”, was applied to 23 performance indicators of agrometeorological models, calculated on large sets of simulated and observed data of four agronomic and meteorological variables: above-ground biomass, leaf area index, hourly air relative humidity and daily solar radiation. Two subsets were determined: {Squared Bias, Root Mean Squared Relative Error, Coefficient of Determination, Pattern Index, Modified Modelling Efficiency}, {Persistence Model Efficiency, Root Mean Squared Relative Error, Coefficient of Determination, Pattern Index}. The method needs corroboration but is statistically founded and can support the implementation of standardized evaluation tools. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM LiveM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4503
Permanent link to this record