toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.; Christian,; Olesen, J.E.; Van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S. url  openurl
  Title Crop modelling for integrated assessment of risk to food production from climate change Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C0.3  
  Keywords (up)  
  Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2089  
Permanent link to this record
 

 
Author Halford, N.G.; Foyer, C.H. url  doi
openurl 
  Title Producing a road map that enables plants to cope with future climate change Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3433-3434  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 ISBN Medium Editorial Material  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4704  
Permanent link to this record
 

 
Author de Wit, A.; Boogaard, H.; van Diepen, K.; van Kraalingen, D.; Rötter, R.; Supit, I.; Wolf, J.; van Ittersum, M. url  doi
openurl 
  Title WOFOST developer’s response to article by Stella et al., Environmental Modelling & Software 59 (2014): 44–58 Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 73 Issue Pages 57-59  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Letter  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4699  
Permanent link to this record
 

 
Author Köchy, M.; Hiederer, R.; Freibauer, A. url  doi
openurl 
  Title Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world Type Journal Article
  Year 2015 Publication Soil Abbreviated Journal Soil  
  Volume 1 Issue Pages 351-365  
  Keywords (up)  
  Abstract •Soils contain 1062 Pg organic C (SOC) in 0-1 m depth based on the adjusted Harmonized World Soil Database. Different estimates of bulk density of Histosols cause an uncertainty in the range of -56/+180 Pg. We also report the frequency distribution of SOC stocks by continent, wetland type, and permafrost type. Using additional estimates for frozen and deeper soils, global soils are estimated to contain 1325 Pg SOC in 0-1m and ca. 3000 Pg, including deeper layers. The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD’s bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm−3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of −56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of “wetland”, wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of “peatland”.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-398x ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, Hub, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4686  
Permanent link to this record
 

 
Author Bennett, E.; Carpenter, S.R.; Gordon, L.J.; Ramankutty, N.; Balvanera, P.; Campbell, B.; Cramer, W.; Foley, J.; Folke, C.; Carlberg, L.; Lui, J.; Lotze-Campen, H.; Mueller, N.D.; Peterson, G.D.; Polasky, S.; Rockström, J.; Scholes, R.J.; Spierenburg, M. url  openurl
  Title Toward a more resilient agriculture Type Journal Article
  Year 2014 Publication The Solutions Journal Abbreviated Journal The Solutions Journal  
  Volume 5 Issue 5 Pages 65-75  
  Keywords (up)  
  Abstract Agriculture is a key driver of change in the Anthropocene. It is both a critical factor for human well-being and development and a major driver of environmental decline. As the human population expands to more than 9 billion by 2050, we will be compelled to find ways to adequately feed this population while simultaneously decreasing the environmental impact of agriculture, even as global change is creating new circumstances to which agriculture must respond. Many proposals to accomplish this dual goal of increasing agricultural production while reducing its environmental impact are based on increasing the efficiency of agricultural production relative to resource use and relative to unintended outcomes such as water pollution, biodiversity loss, and greenhouse gas emissions. While increasing production efficiency is almost certainly necessary, it is unlikely to be sufficient and may in some instances reduce long-term agricultural resilience, for example, by degrading soil and increasing the fragility of agriculture to pest and disease outbreaks and climate shocks. To encourage an agriculture that is both resilient and sustainable, radically new approaches to agricultural development are needed. These approaches must build on a diversity of solutions operating at nested scales, and they must maintain and enhance the adaptive and transformative capacity needed to respond to disturbances and avoid critical thresholds. Finding such approaches will require that we encourage experimentation, innovation, and learning, even if they sometimes reduce short-term production efficiency in some parts of the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4657  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: