|   | 
Details
   web
Records
Author Ventrella, D.; Giglio, L.; Charfeddine, M.; Dalla Marta, A.
Title Consumptive use of green and blue water for winter durum wheat cultivated in Southern Italy Type Journal Article
Year 2015 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology
Volume 20 Issue 1 Pages 33-44
Keywords (up) irrigation; water productivity; model simulation; climate change; climate-change scenarios; air co2 enrichment; impact; footprint; irrigation; simulation; yield; agriculture; variability; resources
Abstract In this study at the regional scale, the model DSSAT CERES-Wheat was applied in order to simulate the cultivation of winter durum wheat (WW) and to estimate the green water (GW) and the blue water (BW) through a dual-step approach (with and without supplemental irrigation). The model simulation covered a period of 30 years for three scenarios including a reference period and two future scenarios based on forecasted global average temperature increase of 2 and 5 degrees C. The GW and BW contribution for evapo transpiration requirement is presented and analyzed on a distributed scale related to the Puglia region (Southern Italy) characterized by high evaporative demand of the atmosphere. The GW component was dominant compared to BW, covering almost 90% of the ETc of WW Under a Baseline scenario the weight BW was 11%, slightly increased in the future scenarios. GW appeared dependent on the spatial and temporal distribution of rainfall during the crop cycle, and to the hydraulic characteristics of soil for each calculation unit. After considering the effects of climate change on irrigation requirement of WW we carried out an example of analysis in order to verify the economic benefit of supplemental irrigation for WW cultivation. The probability that irrigation generates a negative or zero income ranged between 55 and 60% and climate change did not impact the profitability of irrigation for WW as simulated for the economic and agro-pedoclimatic conditions of Puglia region considered in this study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4653
Permanent link to this record
 

 
Author Stürck, J.; Levers, C.; van der Zanden, E.H.; Schulp, C.J.E.; Verkerk, P.J.; Kuemmerle, T.; Helming, J.; Lotze-Campen, H.; Tabeau, A.; Popp, A.; Schrammeijer, E.; Verburg, P.
Title Simulating and delineating future land change trajectories across Europe Type Journal Article
Year 2015 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change
Volume Issue Pages in press
Keywords (up) land use change; land system; modeling; scenario; Europe; ecosystem services
Abstract Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4996
Permanent link to this record
 

 
Author Camacho, C.; Pérez-Barahona, A.
Title Land use dynamics and the environment Type Journal Article
Year 2015 Publication Journal of Economic Dynamics and Control Abbreviated Journal Journal of Economic Dynamics and Control
Volume 52 Issue Pages 96-118
Keywords (up) land use; spatial dynamics; pollution; climate-change; air-pollution; agriculture; instability; allocation; principle; pattern; quality; health; impact
Abstract This paper builds a benchmark framework to study optimal land use, encompassing land use activities and environmental degradation. We focus on the spatial externalities of land use as drivers of spatial patterns: land is immobile by nature, but local actions affect the whole space since pollution flows across locations resulting in both local and global damages. We prove that the decision maker problem has a solution, and characterize the corresponding social optimum trajectories by means of the Pontryagin conditions. We also show that the existence and uniqueness of time-invariant solutions are not in general guaranteed. Finally, a global dynamic algorithm is proposed in order to illustrate the spatial-dynamic richness of the model. We find that our simple set-up already reproduces a great variety of spatial patterns related to the interaction between land use activities and the environment. In particular, abatement technology turns out to play a central role as pollution stabilizer, allowing the economy to reach a time-invariant equilibrium that can be spatially heterogeneous. (C) 2014 Elsevier B.V. All rights reserved.
Address 2015-10-09
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-1889 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4698
Permanent link to this record
 

 
Author Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K.J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; Izaurralde, R.C.; Mueller, N.D.; Ray, D.K.; Rosenzweig, C.; Ruane, A.C.; Sheffield, J.
Title The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0) Type Journal Article
Year 2015 Publication Geoscientific Model Development Abbreviated Journal Geosci. Model Dev.
Volume 8 Issue 2 Pages 261-277
Keywords (up) land-surface model; climate-change; systems simulation; high-resolution; water; carbon; yield; agriculture; patterns; growth
Abstract We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project includes global simulations of yields, phenologies, and many land-surface fluxes using 12-15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1991-9603 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4559
Permanent link to this record
 

 
Author De Pascale, S.; Maggio, A.; Orsini, F.; Stanghellini, C.; Heuvelink, E.
Title Growth response and radiation use efficiency in tomato exposed to short-term and long-term salinized soils Type Journal Article
Year 2015 Publication Scientia Horticulturae Abbreviated Journal Scientia Horticulturae
Volume 189 Issue Pages 139-149
Keywords (up) Leaf osmotic adjustment; Stomatal resistance; Leaf water potential; Light; Salt stress; RUE; physiological-response; salt tolerance; drought stress; water-use; yield; nitrogen; interception; productivity; leaf; photosynthesis
Abstract Farmlands are increasingly exposed to degradation phenomena associated to climate change and agricultural practices, including irrigation. It is estimated that about 20% of the world’s irrigated land is salt affected. In this paper we aimed at evaluating the effect of seasonal and multiannual soil satinization on growth, yield, and radiation use efficiency of tomato in open field. Two field experiments were carried out at the Experimental Station of the University of Naples Federico II (latitude 40 degrees 31’N longitude 14 degrees 58’E) (Italy) on tomato during 2004 and 2005 to study the effect of five levels of water salinity: NSC (EC = 0.5 dS m(-1)), SW1 (EC= 2.3 dS m(-1)), SW2 (EC= 4.4 dS m(-1)), SW3 (EC= 8.5 dS m(-1)) and SW4 (EC= 15.7 dS m(-1)) in a soil exposed to one-season salinization (ST = short-term) and an adjacent soil exposed to >20 years salinization (LT = long-term). Plant growth, yield and fruit quality (pH, EC, total soluble solids and the concentration of reducing sugars and of titratable acids), and plant water relations were measured and radiation use efficiency (RUE) was calculated. Increasing water salinity negatively affected the leaf area index (LAI), radiation use efficiency (RUE) and above-ground dry weight (DW) accumulation resulting in lower total and marketable yield. Maximum total and marketable yield obtained with the NSC treatment were respectively 117.9 and 111.0 Mg ha(-1) in 2004 and 113.1 and 107.9 Mg ha(-1) in 2005. Although the smaller leaf area of salinized plants was largely responsible for reduced RUE, we found approximately 50% of this reduction to be accounted for by processes other than changed crop architecture. These may include an increased stomatal resistance, increased mesophyll resistance and other impaired metabolic functions that may occur at high salinity. Remarkably, we found that LT salinized plants had a slightly better efficiency of use of intercepted radiation (RUEIR) at a given EC of soil extract than ST salinized plants indicating that LT salinization, and consequent permanent modifications of the soil physical properties, may trigger additional physiological mechanisms of adaptation compared to ST salinized plants. These differences are relevant in light of the evolution of salinized areas, also in response to climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4238 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4557
Permanent link to this record