toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title Systematic analysis of site-specific yield distributions resulting from nitrogen management and climatic variability interactions Type Journal Article
  Year 2015 Publication Precision Agriculture Abbreviated Journal Precision Agric.  
  Volume 16 Issue 4 Pages 361-384  
  Keywords (down) nitrogen management; climatic variability; lars-wg weather generator; stics soil-crop model; pearson system; probability risk assessment; crop model stics; fertilizer nitrogen; generic model; wheat yield; maize; simulation; skewness; field; agriculture; scenarios  
  Abstract At the plot level, crop simulation models such as STICS have the potential to evaluate risk associated with management practices. In nitrogen (N) management, however, the decision-making process is complex because the decision has to be taken without any knowledge of future weather conditions. The objective of this paper is to present a general methodology for assessing yield variability linked to climatic uncertainty and variable N rate strategies. The STICS model was coupled with the LARS-Weather Generator. The Pearson system and coefficients were used to characterise the shape of yield distribution. Alternatives to classical statistical tests were proposed for assessing the normality of distributions and conducting comparisons (namely, the Jarque-Bera and Wilcoxon tests, respectively). Finally, the focus was put on the probability risk assessment, which remains a key point within the decision process. The simulation results showed that, based on current N application practice among Belgian farmers (60-60-60 kgN ha(-1)), yield distribution was very highly significantly non-normal, with the highest degree of asymmetry characterised by a skewness value of -1.02. They showed that this strategy gave the greatest probability (60 %) of achieving yields that were superior to the mean (10.5 t ha(-1)) of the distribution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-2256 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4519  
Permanent link to this record
 

 
Author Perego, A.; Giussani, A.; Fumagalli, M.; Sanna, M.; Chiodini, M.; Carozzi, M.; Alfieri, L.; Brenna, S.; Acutis, M. openurl 
  Title Crop rotation, fertilizer types and application timing affecting nitrogen leaching in nitrate vulnerable zones in Po Valley Type Journal Article
  Year 2013 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology  
  Volume 3 Issue 2 Pages 39-50  
  Keywords (down) nitrogen fertilization; crop simulation model; nitrate leaching; crop rotation; reduce ammonia losses; 4 cultivation systems; mineral nitrogen; maize; soil; slurry; simulation; model; water; groundwater  
  Abstract A critical analysis was performed to evaluate the potential risk of nitrate leaching towards groundwater in three Nitrate Vulnerable Zones (NVZs) of the Lombardia plain by applying the ARMOSA crop simulation model over a 20 years period (1988-2007). Each studied area was characterized by (i) two representative soil types, (ii) a meteorological data set, (iii) four crop rotations according to the regional land use, (iv) organic N load, calculated on the basis of livestock density. We simulated 3 scenarios defined by different fertilization time and amount of mineral and organic fertilizers. The A scenario involved no limitation in organic N application, while under the B and C scenarios the N organic amount was 170 and 250 kg N ha(-1)y(-1), respectively. The C scenario was compliant with the requirement of the 2012 Italian derogation, allowing only the use of organic manure with an efficiency greater than 65%. The model results highlighted that nitrate leaching was significantly reduced passing from the A scenario to the B and C ones (p<0.01); on average nitrogen losses decreased by up to 53% from A to B and up to 75% from A to C.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2038-5625 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4611  
Permanent link to this record
 

 
Author De Sanctis, G.; Roggero, P.P.; Seddaiu, G.; Orsini, R.; Porter, C.H.; Jones, J.W. url  doi
openurl 
  Title Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area Type Journal Article
  Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 40 Issue Pages 18-27  
  Keywords (down) N fertilization; C dynamics; DSSAT; Wheat; Maize; Weed fallow; sandy loam soil; cropping systems; agricultural systems; climate-change; winter-wheat; sequestration; matter; model; fertilization; dynamics  
  Abstract The differential impact on soil organic carbon (SOC) of applying no tillage (NT) compared to conventional tillage (CT, i.e. mouldboard ploughing), along with three rates of nitrogen (N) fertilizer application (0,90 and 180 kg ha(-1) y(-1)), was studied under rain-fed Mediterranean conditions in a long-term experiment based on a durum wheat-maize rotation, in which crop residues were left on the soil (NT) or incorporated (CT). Observed SOC content following 8 and 12 years of continuous treatment application was significantly higher in the top 10 cm of the soil under NT than CT, but it was similar in the 10-40 cm layer. NT grain yields for both maize and durum wheat were below those attained under CT (on average 32% and 14% lower respectively) at a given rate of N fertilizer application. Soil, climate and crop data over 5 years were used to calibrate DSSAT model in order to simulate the impact of the different management practices over a 50-year period. Good agreement was obtained between observed and simulated values for crops grain yield, above-ground biomass and observed SOC values. Results from the simulations showed that under NT the weeds growing during the intercrop fallow period made a significant contribution to the observed SOC increase. When the contribution of the weed fallow was considered, NT significantly increased SOC in the top 40 cm of the soil at an average rate of 0.43, 0.31 and 0.03 t ha(-1) per year, respectively for 180,90 and 0 kg N ha(-1) year(-1), within the simulated 50 years. Under CT, a significant SOC increase was simulated under N180 and a significant decrease when no fertilizer was supplied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4469  
Permanent link to this record
 

 
Author Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. url  doi
openurl 
  Title Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa Type Journal Article
  Year 2013 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 23 Issue 1 Pages 130-143  
  Keywords (down) multiple cropping; sequential cropping systems; crop modelling; agricultural management; adaptation options; global vegetation model; future food-production; rainy-season; west-africa; agriculture; yield; maize; soil; variability; heat  
  Abstract Multiple cropping systems provide more harvest security for farmers, allow for crop intensification and furthermore influence ground cover, soil erosion, albedo, soil chemical properties, pest infestation and the carbon sequestration potential. We identify the traditional sequential cropping systems in ten sub-Saharan African countries from a survey dataset of more than 8600 households. We find that at least one sequential cropping system is traditionally used in 35% of all administrative units in the dataset, mainly including maize or groundnuts. We compare six different management scenarios and test their susceptibility as adaptation measure to climate change using the dynamic global vegetation model for managed land LPJmL. Aggregated mean crop yields in sub-Saharan Africa decrease by 6-24% due to climate change depending on the climate scenario and the management strategy. As an exception, some traditional sequential cropping systems in Kenya and South Africa gain by at least 25%. The crop yield decrease is typically weakest in sequential cropping systems and if farmers adapt the sowing date to changing climatic conditions. Crop calorific yields in single cropping systems only reach 40-55% of crop calorific yields obtained in sequential cropping systems at the end of the 21st century. The farmers’ choice of adequate crops, cropping systems and sowing dates can be an important adaptation strategy to climate change and these management options should be considered in climate change impact studies on agriculture. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4823  
Permanent link to this record
 

 
Author Nendel, C.; Wieland, R.; Mirschel, W.; Specka, X.; Guddat, C.; Kersebaum, K.C. url  doi
openurl 
  Title Simulating regional winter wheat yields using input data of different spatial resolution Type Journal Article
  Year 2013 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 145 Issue Pages 67-77  
  Keywords (down) monica; agro-ecosystem model; dynamic modelling; scaling; input data; climate-change; crop yield; nitrogen dynamics; food security; mineral nitrogen; soil-moisture; scaling-up; model; maize; water  
  Abstract The success of using agro-ecosystem models for the high-resolution simulation of agricultural yields for larger areas is often hampered by a lack of input data. We investigated the effect of different spatially resolved soil and weather data used as input for the MONICA model on its ability to reproduce winter wheat yields in the Federal State of Thuringia, Germany (16,172 km(2)). The combination of one representative soil and one weather station was insufficient to reproduce the observed mean yield of 6.66 +/- 0.87 t ha(-1) for the federal state. Use of a 100 m x 100 m grid of soil and relief information combined with just one representative weather station yielded a good estimator (7.01 +/- 1.47 t ha(-1)). The soil and relief data grid used in combination with weather information from 14 weather stations in a nearest neighbour approach produced even better results (6.60 +/- 1.37 t ha(-1)); the same grid used with 39 additional rain gauges and an interpolation algorithm that included an altitude correction of temperature data slightly overpredicted the observed mean (7.36 +/- 1.17 t ha(-1)). It was concluded that the apparent success of the first two high-resolution approaches over the latter was based on two effects that cancelled each other out: the calibration of MONICA to match high-yield experimental data and the growth-defining and -limiting effect of weather data that is not representative for large parts of the region. At the county and farm level the MONICA model failed to reproduce the 1992-2010 time series of yields, which is partly explained by the fact that many growth-reducing factors were not considered in the model. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4498  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: