toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lessire, F.; Hornick, J.L.; Minet, J.; Dufrasne, I. url  doi
openurl 
  Title Rumination time, milk yield, milking frequency of grazing dairy cows milked by a mobile automatic system during mild heat stress Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue 01 Pages 12-14  
  Keywords (up) dairy; heat stress; THI; behaviour; milk yield  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-4700 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4570  
Permanent link to this record
 

 
Author Ruete, A.; Velarde, A.; Blanco-Penedo, I. url  doi
openurl 
  Title Eco-DREAMS-S: modelling the impact of climate change on milk performance in organic dairy farms Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue 01 Pages 21-23  
  Keywords (up) dairy; organic; THI; heat stress; milk production  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-4700 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4679  
Permanent link to this record
 

 
Author Schönhart, M.; Nadeem, I. url  doi
openurl 
  Title Direct climate change impacts on cattle indicated by THI models Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue Pages 17-17  
  Keywords (up) dairy; THI; milk yield; integrated modelling; economic loss  
  Abstract  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4811  
Permanent link to this record
 

 
Author Waterworth, W.M.; Bray, C.M.; West, C.E. doi  openurl
  Title The importance of safeguarding genome integrity in germination and seed longevity Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3549-3558  
  Keywords (up) DNA Damage/genetics; DNA Repair/genetics; *Genome, Plant; Germination/*genetics; Plant Physiological Phenomena/*genetics; Seeds/*genetics; Ageing; DNA repair; double-strand break; germination; longevity; recombination; seed vigour; viability  
  Abstract Seeds are important to agriculture and conservation of plant biodiversity. In agriculture, seed germination performance is an important determinant of crop yield, in particular under adverse climatic conditions. Deterioration in seed quality is associated with the accumulation of cellular damage to macromolecules including lipids, protein, and DNA. Mechanisms that mitigate the deleterious cellular damage incurred in the quiescent state and in cycles of desiccation-hydration are crucial for the maintenance of seed viability and germination vigour. In early-imbibing seeds, damage to the embryo genome must be repaired prior to initiation of cell division to minimize growth inhibition and mutation of genetic information. Here we review recent advances that have established molecular links between genome integrity and seed quality. These studies identified that maintenance of genome integrity is particularly important to the seed stage of the plant lifecycle, revealing new insight into the physiological roles of plant DNA repair and recombination mechanisms. The high conservation of DNA repair and recombination factors across plant species underlines their potential as promising targets for the improvement of crop performance and development of molecular markers for prediction of seed vigour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4579  
Permanent link to this record
 

 
Author Meyer, P. doi  openurl
  Title Epigenetic variation and environmental change Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3541-3548  
  Keywords (up) DNA Methylation/genetics; DNA Transposable Elements/genetics; *Environment; *Epigenesis, Genetic; Plants/genetics; Stress, Physiological/genetics; Adaptation; DNA methylation; epigenetics; stress response  
  Abstract Environmental conditions can change the activity of plant genes via epigenetic effects that alter the competence of genetic information to be expressed. This may provide a powerful strategy for plants to adapt to environmental change. However, as epigenetic changes do not modify DNA sequences and are therefore reversible, only those epi-mutations that are transmitted through the germline can be expected to contribute to a long-term adaptive response. The major challenge for the investigation of epigenetic adaptation theories is therefore to identify genomic loci that undergo epigenetic changes in response to environmental conditions, which alter their expression in a heritable way and which improve the plant’s ability to adapt to the inducing conditions. This review focuses on the role of DNA methylation as a prominent epigenetic mark that controls chromatin conformation, and on its potential in mediating expression changes in response to environmental signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1460-2431 (Electronic) 0022-0957 (Linking) ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4569  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: