toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sánchez, B.; Rasmussen, A.; Porter, J.R. doi  openurl
  Title Temperatures and the growth and development of maize and rice: a review Type Journal Article
  Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 20 Issue 2 Pages 408-417  
  Keywords (down) Climate Change; Oryza/*growth & development; Temperature; Zea mays/*growth & development; cardinal temperatures; climatic change impacts; development; growth; lethal temperatures; maize; rice  
  Abstract Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this study, we have identified rice and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize, complementing an earlier study on wheat. Lethal temperatures and cardinal temperatures, together with error estimates, have been identified for phenological phases and development stages. Following the methodology of previous work, we have collected and statistically analysed temperature thresholds of the three crops for the key physiological processes such as leaf initiation, shoot growth and root growth and for the most susceptible phenological phases such as sowing to emergence, anthesis and grain filling. Our summary shows that cardinal temperatures are conservative between studies and are seemingly well defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur, IPCC-AR5 Approved no  
  Call Number MA @ admin @ Serial 4693  
Permanent link to this record
 

 
Author Bennetzen, E.H.; Smith, P.; Porter, J.R. doi  openurl
  Title Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050 Type Journal Article
  Year 2016 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 22 Issue 2 Pages 763-781  
  Keywords (down) climate change; energy use; global agriculture; greenhouse gas emissions; land use; mitigation; sustainable intensification  
  Abstract Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2 -eq. yr(-1) and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop- and livestock-production, respectively. Except for the energy-use component of farming, emissions from all sources have increased less than agricultural production. Our projected business-as-usual range suggests that emissions may be further decoupled by 20-55% giving absolute agricultural emissions of 8.2-14.5 Pg CO2 -eq. yr(-1) by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food-system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4706  
Permanent link to this record
 

 
Author Patil, R.H.; Laegdsmand, M.; Olesen, J.E.; Porter, J.R. url  openurl
  Title Soil temperature manipulation to study global warming effects in arable land: performance of buried heating-cable method Type Journal Article
  Year 2014 Publication Environment and Ecology Research Abbreviated Journal Environment and Ecology Research  
  Volume 1 Issue 4 Pages 196-204  
  Keywords (down) Climate Change; Climate Manipulation; Soil Warming; Heating Cables; Soil Temperature; Agro-Ecosystems  
  Abstract Buried heating-cable method for manipulating soil temperature was designed and tested its performance in large concrete lysimeters grown with the wheat crop in Denmark. Soil temperature in heated plots was elevated by 5℃ compared with that in control by burying heating-cable at 0.1 m depth in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control plots at 0.1 m depth while the mean seasonal rise in soil temperature in the top 0.25 m depth (plough layer) was 3℃. Soil temperature in control plots froze (≤ 0℃) for 15 and 13 days respectively at 0.05 and 0.1 m depths while it did not in heated plots during the coldest period (Nov-Apr). This study clearly showed the efficacy of buried heating-cable technique in simulating soil temperature, and thus offers a simple, effective and alternative technique to study soil biogeochemical processes under warmer climates. This technique, however, decouples below-ground soil responses from that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4632  
Permanent link to this record
 

 
Author Refsgaard, J.C.; Arnbjerg-Nielsen, K.; Drews, M.; Halsnaes, K.; Jeppesen, E.; Madsen, H.; Markandya, A.; Olesen, J.E.; Porter, J.R.; Christensen, J.H. url  doi
openurl 
  Title The role of uncertainty in climate change adaptation strategies – a Danish water management example Type Journal Article
  Year 2013 Publication Mitigation and Adaptation Strategies for Global Change Abbreviated Journal Mitig. Adapt. Strateg. Glob. Change  
  Volume 18 Issue 3 Pages 337-359  
  Keywords (down) Climate change; Adaptation; Uncertainty; Risk; Water sectors; Multi-disciplinary; change impacts; global change; winter-wheat; models; scenarios; ensembles; denmark; vulnerability; community; knowledge  
  Abstract We propose a generic framework to characterize climate change adaptation uncertainty according to three dimensions: level, source and nature. Our framework is different, and in this respect more comprehensive, than the present UN Intergovernmental Panel on Climate Change (IPCC) approach and could be used to address concerns that the IPCC approach is oversimplified. We have studied the role of uncertainty in climate change adaptation planning using examples from four Danish water related sectors. The dominating sources of uncertainty differ greatly among issues; most uncertainties on impacts are epistemic (reducible) by nature but uncertainties on adaptation measures are complex, with ambiguity often being added to impact uncertainties. Strategies to deal with uncertainty in climate change adaptation should reflect the nature of the uncertainty sources and how they interact with risk level and decision making: (i) epistemic uncertainties can be reduced by gaining more knowledge; (ii) uncertainties related to ambiguity can be reduced by dialogue and knowledge sharing between the different stakeholders; and (iii) aleatory uncertainty is, by its nature, non-reducible. The uncertainty cascade includes many sources and their propagation through technical and socio-economic models may add substantially to prediction uncertainties, but they may also cancel each other. Thus, even large uncertainties may have small consequences for decision making, because multiple sources of information provide sufficient knowledge to justify action in climate change adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1381-2386 1573-1596 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4613  
Permanent link to this record
 

 
Author Porter, J.R.; Dyball, R.; Dumaresq, D.; Deutsch, L.; Matsuda, H. url  doi
openurl 
  Title Feeding capitals: Urban food security and self-provisioning in Canberra, Copenhagen and Tokyo Type Journal Article
  Year 2014 Publication Global Food Security Abbreviated Journal Global Food Security  
  Volume 3 Issue 1 Pages 1-7  
  Keywords (down) cities; food security; self-provisioning; provisioning ecosystems  
  Abstract Most people live in cities, but most food system studies and food security issues focus on the rural poor. Urban populations differ from rural populations in their food consumption by being generally wealthier, requiring food trade for their food security, defined as the extent to which people have adequate diets. Cities rarely have the self-provisioning capacity to satisfy their own food supply, understood as the extent to which the food consumed by the city’s population is produced from the city’s local agro-ecosystems. Almost inevitably, a city’s food security is augmented by production from remote landscapes, both internal and external in terms of a state’s jurisdiction. We reveal the internal and external food flows necessary for the food security of three wealthy capital cities (Canberra, Australia; Copenhagen, Denmark; Tokyo, Japan). These cities cover two orders of magnitude in population size and three orders of magnitude in population density. From traded volumes of food and their sources into the cities, we calculate the productivity of the city’s regional and non-regional ecosystems that provide food for these cities and estimate the overall utilised land area. The three cities exhibit differing degrees of food self provisioning capacity and exhibit large differences in the areas on which they depend to provide their food. We show that, since 1965, global land area effectively imported to produce food for these cities has increased with their expanding populations, with large reductions in the percentage of demand met by local agro-ecosystems. The physical trading of food commodities embodies ecosystem services, such as water, soil fertility and pollination that are required for land-based food production. This means that the trade in these embodied ecosystem services has become as important for food security as traditional economic mechanisms such as market access and trade. A future policy question, raised by our study, is the degree to which governments will remain committed to open food trade policies in the face of national political unrest caused by food shortages. Our study demonstrates the need to determine the food security and self-provisioning capacity of a wide range of rich and poor cities, taking into account the global location of the ecosystems that are provisioning them. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-9124 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4636  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: