toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P. doi  openurl
  Title Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift Type Journal Article
  Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 20 Issue 12 Pages 3686-3699  
  Keywords (down) Agriculture/*methods; China; *Climate Change; Geography; *Models, Biological; *Temperature; Time Factors; Zea mays/*growth & development; adaptation; agriculture; climate change; crop; cultivar; impacts; phenology  
  Abstract Maize phenology observations at 112 national agro-meteorological experiment stations across China spanning the years 1981-2009 were used to investigate the spatiotemporal changes of maize phenology, as well as the relations to temperature change and cultivar shift. The greater scope of the dataset allows us to estimate the effects of temperature change and cultivar shift on maize phenology more precisely. We found that maize sowing date advanced significantly at 26.0% of stations mainly for spring maize in northwestern, southwestern and northeastern China, although delayed significantly at 8.0% of stations mainly in northeastern China and the North China Plain (NCP). Maize maturity date delayed significantly at 36.6% of stations mainly in the northeastern China and the NCP. As a result, duration of maize whole growing period (GPw) was prolonged significantly at 41.1% of stations, although mean temperature (Tmean) during GPw increased at 72.3% of stations, significantly at 19.6% of stations, and Tmean was negatively correlated with the duration of GPw at 92.9% of stations and significantly at 42.9% of stations. Once disentangling the effects of temperature change and cultivar shift with an approach based on accumulated thermal development unit, we found that increase in temperature advanced heading date and maturity date and reduced the duration of GPw at 81.3%, 82.1% and 83.9% of stations on average by 3.2, 6.0 and 3.5 days/decade, respectively. By contrast, cultivar shift delayed heading date and maturity date and prolonged the duration of GPw at 75.0%, 94.6% and 92.9% of stations on average by 1.5, 6.5 and 6.5 days/decade, respectively. Our results suggest that maize production is adapting to ongoing climate change by shift of sowing date and adoption of cultivars with longer growing period. The spatiotemporal changes of maize phenology presented here can further guide the development of adaptation options for maize production in near future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4544  
Permanent link to this record
 

 
Author Stratonovitch, P.; Semenov, M.A. doi  openurl
  Title Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3599-3609  
  Keywords (down) Adaptation, Physiological; *Climate Change; Computer Simulation; Europe; Flowers/*physiology; *Hot Temperature; *Quantitative Trait, Heritable; Time Factors; Triticum/*growth & development/*physiology; Downscaling; LARS-WG weather generator; Sirius wheat model.; heat stress; ideotype design; impact assessment  
  Abstract To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Projected climatic and environmental changes emphasize the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost, and drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, the Sirius wheat model was refined by incorporating the effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number, and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. The model was used to optimize wheat ideotypes for CMIP5-based climate scenarios for 2050 at six sites in Europe with diverse climates. The yield potential for heat-tolerant ideotypes can be substantially increased in the future (e.g. by 80% at Seville, 100% at Debrecen) compared with the current cultivars by selecting an optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, at two sites, Seville and Debrecen, the grain yields of heat-sensitive ideotypes were substantially lower (by 54% and 16%) and more variable compared with heat-tolerant ideotypes, because the extended grain filling required for the increased yield potential was in conflict with episodes of high temperature during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4578  
Permanent link to this record
 

 
Author Vitali, A.; Lana, E.; Amadori, M.; Bernabucci, U.; Nardone, A.; Lacetera, N. url  doi
openurl 
  Title Analysis of factors associated with mortality of heavy slaughter pigs during transport and lairage Type Journal Article
  Year 2014 Publication Journal of Animal Science Abbreviated Journal J. Anim. Sci.  
  Volume 92 Issue 11 Pages 5134-5141  
  Keywords (down) Abattoirs/*statistics & numerical data; Animals; *Data Interpretation, Statistical; Humidity/adverse effects; Light/adverse effects; *Mortality; Retrospective Studies; Seasons; Swine/*physiology; Temperature; Time Factors; Transportation/*statistics & numerical data; lairage; mortality; pigs; temperature-humidity index; transport  
  Abstract The study was based on data collected during 5 yr (2003-2007) and was aimed at assessing the effects of the month, slaughter house of destination (differing for stocking density, openings, brightness, and cooling device types), length of the journey, and temperature-humidity index (THI) on mortality of heavy slaughter pigs (approximately 160 kg live weight) during transport and lairage. Data were obtained from 24,098 journeys and 3,676,153 pigs transported from 1,618 farms to 3 slaughter houses. Individual shipments were the unit of observation. The terms dead on arrival (DOA) and dead in pen (DIP) refer to pigs that died during transport and in lairage at the abattoir before slaughtering, respectively. These 2 variables were assessed as the dependent counts in separate univariate Poisson regressions. The independent variables assessed univariately in each set of regressions were month of shipment, slaughter house of destination, time traveled, and each combination of the month with the time traveled. Two separate piecewise regressions were done. One used DOA counts within THI levels over pigs transported as a dependent ratio and the second used DIP counts within THI levels over pigs from a transport kept in lairage as a dependent ratio. The THI was the sole independent variable in each case. The month with the greatest frequency of deaths was July with a risk ratio of 1.22 (confidence interval: 1.06-1.36; P < 0.05) and 1.27 (confidence interval: 1.06-1.51; P < 0.05) for DOA and DIP, respectively. The lower mortality risk ratios for DOA and DIP were recorded for January and March (P < 0.05). The aggregated data of the summer (June, July, and August) versus non-summer (January, March, September, and November) months showed a greater risk of pigs dying during the hot season when considering both transport and lairage (P < 0.05). The mortality risk ratio of DIP was lower at the slaughter house with the lowest stocking density (0.64 m(2)/100 kg live weight), large open windows on the roof and sidewalls, low brightness (40 lx) lights, and high-pressure sprinklers as cooling devices. The mortality risk ratio of DOA increased significantly for journeys longer than 2 h, whereas no relationship was found between length of transport and DIP. The piecewise analysis pointed out that 78.5 and 73.6 THI were the thresholds above which the mortality rate increased significantly for DOA and DIP, respectively. These results may help the pig industry to improve the welfare of heavy slaughter pigs during transport and lairage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-3163 (Electronic) 0021-8812 (Linking) ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4641  
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J. doi  openurl
  Title Adapting wheat in Europe for climate change Type Journal Article
  Year 2014 Publication Journal of Cereal Science Abbreviated Journal J. Ceareal Sci.  
  Volume 59 Issue 3 Pages 245-256  
  Keywords (down) A, maximum area of flag leaf area; ABA, abscisic acid; CV, coefficient of variation; Crop improvement; Crop modelling; FC, field capacity; GMT, Greenwich mean time; GS, growth stage; Gf, grain filling duration; HI, harvest index; HSP, heat shock protein; Heat and drought tolerance; Impact assessment; LAI, leaf area index; Ph, phylochron; Pp, photoperiod response; Ru, root water uptake; S, duration of leaf senescence; SF, drought stress factor; Sirius; Wheat ideotype  
  Abstract Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0733-5210 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4543  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: