|   | 
Details
   web
Records
Author Kersebaum, K.; Kroes, J.; Gobin, A.; Takáč, J.; Hlavinka, P.; Trnka, M.; Ventrella, D.; Giglio, L.; Ferrise, R.; Moriondo, M.; Dalla Marta, A.; Luo, Q.; Eitzinger, J.; Mirschel, W.; Weigel, H.-J.; Manderscheid, R.; Hoffmann, M.; Nejedlik, P.; Iqbal, M.; Hösch, J.
Title Assessing uncertainties of water footprints using an ensemble of crop growth models on winter wheat Type Journal Article
Year 2016 Publication Water Abbreviated Journal Water
Volume 8 Issue (down) 12 Pages 571
Keywords
Abstract Crop productivity and water consumption form the basis to calculate the water footprint (WF) of a specific crop. Under current climate conditions, calculated evapotranspiration is related to observed crop yields to calculate WF. The assessment of WF under future climate conditions requires the simulation of crop yields adding further uncertainty. To assess the uncertainty of model based assessments of WF, an ensemble of crop models was applied to data from five field experiments across Europe. Only limited data were provided for a rough calibration, which corresponds to a typical situation for regional assessments, where data availability is limited. Up to eight models were applied for wheat. The coefficient of variation for the simulated actual evapotranspiration between models was in the range of 13%–19%, which was higher than the inter-annual variability. Simulated yields showed a higher variability between models in the range of 17%–39%. Models responded differently to elevated CO2 in a FACE (Free-Air Carbon Dioxide Enrichment) experiment, especially regarding the reduction of water consumption. The variability of calculated WF between models was in the range of 15%–49%. Yield predictions contributed more to this variance than the estimation of water consumption. Transpiration accounts on average for 51%–68% of the total actual evapotranspiration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4987
Permanent link to this record
 

 
Author van Lingen, H.J.; Plugge, C.M.; Fadel, J.G.; Kebreab, E.; Bannink, A.; Dijkstra, J.
Title Correction: Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation Type Miscellaneous
Year 2016 Publication PLoS One Abbreviated Journal PLoS One
Volume 11(12) Issue (down) 12 Pages e0168052
Keywords
Abstract [This corrects the article DOI: 10.1371/journal.pone.0161362.].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes LiveM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5020
Permanent link to this record
 

 
Author Trnka, M.; Hlavinka, P.; Semenov, M.A.
Title Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change Type Journal Article
Year 2015 Publication Journal of the Royal Society Interface Abbreviated Journal J. R. Soc. Interface
Volume 12 Issue (down) 112 Pages 20150721
Keywords climate change; extreme events; food security; winter wheat
Abstract Ways of increasing the production of wheat, the most widely grown cereal crop, will need to be found to meet the increasing demand caused by human population growth in the coming decades. This increase must occur despite the decrease in yield gains now being reported in some regions, increased price volatility and the expected increase in the frequency of adverse weather events that can reduce yields. However, if and how the frequency of adverse weather events will change over Europe, the most important wheat-growing area, has not yet been analysed. Here, we show that the accumulated probability of 11 adverse weather events with the potential to significantly reduce yield will increase markedly across all of Europe. We found that by the end of the century, the exposure of the key European wheat-growing areas, where most wheat production is currently concentrated, may increase more than twofold. However, if we consider the entire arable land area of Europe, a greater than threefold increase in risk was predicted. Therefore, shifting wheat production to new producing regions to reduce the risk might not be possible as the risk of adverse events beyond the key wheat-growing areas increases even more. Furthermore, we found a marked increase in wheat exposure to high temperatures, severe droughts and field inaccessibility compared with other types of adverse events. Our results also showed the limitations of some of the presently debated adaptation options and demonstrated the need for development of region-specific strategies. Other regions of the world could be affected by adverse weather events in the future in a way different from that considered here for Europe. This observation emphasizes the importance of conducting similar analyses for other major wheat regions.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-5689 1742-5662 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4819
Permanent link to this record
 

 
Author Soussana, J.-F.; Fereres, E.; Long, S.P.; Mohren, F.G.M.J.; Pandya-Lorch, R.; Peltonen-Sainio, P.; Porter, J.R.; Rosswall, T.; von Braun, J.
Title A European science plan to sustainably increase food security under climate change Type Journal Article
Year 2012 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 18 Issue (down) 11 Pages 3269-3271
Keywords
Abstract
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium Letter
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4815
Permanent link to this record
 

 
Author Porter, J.R.; Christensen, S.
Title Deconstructing crop processes and models via identities Type Journal Article
Year 2013 Publication Plant Cell and Environment Abbreviated Journal Plant Cell and Environment
Volume 36 Issue (down) 11 Pages 1919-1925
Keywords Biomass; Carbon Dioxide/pharmacology; Climate Change; Crops, Agricultural/drug effects/*physiology; *Models, Biological; Kaya-Porter identity; crop models; deconstruction; resource use efficiency
Abstract This paper is part review and part opinion piece; it has three parts of increasing novelty and speculation in approach. The first presents an overview of how some of the major crop simulation models approach the issue of simulating the responses of crops to changing climatic and weather variables, mainly atmospheric CO2 concentration and increased and/or varying temperatures. It illustrates an important principle in models of a single cause having alternative effects and vice versa. The second part suggests some features, mostly missing in current crop models, that need to be included in the future, focussing on extreme events such as high temperature or extreme drought. The final opinion part is speculative but novel. It describes an approach to deconstruct resource use efficiencies into their constituent identities or elements based on the Kaya-Porter identity, each of which can be examined for responses to climate and climatic change. We give no promise that the final part is correct’, but we hope it can be a stimulation to thought, hypothesis and experiment, and perhaps a new modelling approach.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-7791 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4799
Permanent link to this record