|   | 
Details
   web
Records
Author Coles, G.D.; Wratten, S.D.; Porter, J.R.
Title Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production Type Journal Article
Year 2016 Publication PeerJ Abbreviated Journal PeerJ
Volume 4 Issue (up) Pages 17
Keywords Agroecology; Forage utilisation; Food costs; Nutrition; Whole-year; production; New Zealand; Food access; Food security; humans
Abstract Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially available pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their town food needs. We hope that lour model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.
Address 2016-09-13
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2167-8359 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4774
Permanent link to this record
 

 
Author Minet, J.; Laloy, E.; Tychon, B.; François, L.
Title Outcomes from the MACSUR grassland model inter-comparison with the model CARAIB Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue (up) Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Livestock Modelling and Research Colloquium, Bilbao, Spain, 2014-10-14 to 2014-10-16
Notes Approved no
Call Number MA @ admin @ Serial 2642
Permanent link to this record
 

 
Author Minet, J.; Tychon, B.; Jacquemin, I.; François, L.
Title Can a global dynamic vegetation model be used for both grassland and crop modeling at the local scale Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue (up) Pages
Keywords CropM; LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR CropM International Symposium and Workshop: Modelling climate change impacts on crop production for food security, Oslo, Norway, 2014-02-10 to 2014-02-12
Notes Approved no
Call Number MA @ admin @ Serial 2641
Permanent link to this record
 

 
Author McIntyre, M.
Title Predicting the effects of climate change on pathogens Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue (up) Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Workshop: Modelling interactions between climate and livestock pathogen transmission, 2014-01-22 to 2014-01-22
Notes Approved no
Call Number MA @ admin @ Serial 2636
Permanent link to this record
 

 
Author Höglind, M.; Van Oijen, M.; Cameron, D.; Persson, T.
Title Process-based simulation of growth and overwintering of grassland using the BASGRA model Type Journal Article
Year 2016 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume 335 Issue (up) Pages 1-15
Keywords Cold hardening; Frost injury; Phleum pratense L.; Process-based; modelling; Winter survival; Yield; low-temperature tolerance; perennial forage crops; dry-matter; production; climate-change; nutritive-value; snow-cover; bayesian; calibration; timothy regrowth; phleum-pratense; lolium-perenne
Abstract Process-based models (PBM) for simulation of weather dependent grass growth can assist farmers and plant breeders in addressing the challenges of climate change by simulating alternative roads of adaptation. They can also provide management decision support under current conditions. A drawback of existing grass models is that they do not take into account the effect of winter stresses, limiting their use for full-year simulations in areas where winter survival is a key factor for yield security. Here, we present a novel full-year PBM for grassland named BASGRA. It was developed by combining the LINGRA grassland model (Van Oijen et al., 2005a) with models for cold hardening and soil physical winter processes. We present the model and show how it was parameterized for timothy (Phleum pratense L.), the most important forage grass in Scandinavia and parts of North America and Asia. Uniquely, BASGRA simulates the processes taking place in the sward during the transition from summer to winter, including growth cessation and gradual cold hardening, and functions for simulating plant injury due to low temperatures, snow and ice affecting regrowth in spring. For the calibration, we used detailed data from five different locations in Norway, covering a wide range of agroclimatic regions, day lengths (latitudes from 59 degrees to 70 degrees N) and soil conditions. The total dataset included 11 variables, notably above-ground dry matter, leaf area index, tiller density, content of C reserves, and frost tolerance. All data were used in the calibration. When BASGRA was run with the maximum a-posteriori (MAP) parameter vector from the single, Bayesian calibration, nearly all measured variables were simulated to an overall normalized root mean squared error (NRMSE) <0.5. For many site x experiment combinations, NRMSE was <0.3. The temporal dynamics were captured well for most variables, as evaluated by comparing simulated time courses versus data for the individual sites. The results may suggest that BASGRA is a reasonably robust model, allowing for simulation of growth and several important underlying processes with acceptable accuracy for a range of agroclimatic conditions. However, the robustness of the model needs to be tested further using independent data from a wide range of growing conditions. Finally we show an example of application of the model, comparing overwintering risks in two climatically different sites, and discuss future model applications. Further development work should include improved simulation of the dynamics of C reserves, and validation of winter tiller dynamics against independent data. (C) 2016 Elsevier B.V. All rights reserved.
Address 2016-07-28
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4764
Permanent link to this record