toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Pascale, S.; Orsini, F.; Caputo, R.; Palermo, M.A.; Barbieri, G.; Maggio, A. doi  openurl
  Title Seasonal and multiannual effects of salinisation on tomato yield and fruit quality Type Journal Article
  Year 2012 Publication Functional Plant Biology Abbreviated Journal Functional Plant Biology  
  Volume 39 Issue (up) 8 Pages 689-698  
  Keywords fruit ions concentration; fruit lipophilic and hydrophilic antioxidant; capacities; leaf water potentials; leaf stomatal conductance; short- and; long-term salinisation; salinity tolerance; water-stress; antioxidant activity; irrigation; growth; plants; soils; carotenoids; responses; crops  
  Abstract The effects of short-and long-term salinisation were studied by comparing tomato growth on a soil exposed to one-season salinisation (short term) vs growth on a soil exposed to >20 years salinisation (long term). Remarkable differences were associated to substantial modifications of the soil physical-chemical characteristics in the root zone, including deteriorated structure, reduced infiltration properties and increased pH. Fresh yield, fruit number and fruit weight were similarly affected by short-and long-term salinisation. In contrast, the marketable yield was significantly lower in the long-term salinised soil-a response that was also associated to nutritional imbalance (mainly referred to P and K). As reported for plants growing under oxygen deprivation stress, the antioxidant capacity of the water soluble fraction of salinised tomato fruits was enhanced by short-term salinisation, also. Overall, long-term salinisation may cause physiological imbalances and yield reductions that cannot be solely attributed to hyperosmotic stress and ionic toxicity. Therefore, the ability of plants to cope with nutritional deficiency and withstand high pH and anoxia may be important traits that should be considered to improve plant tolerance to long-term salinised soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1445-4408 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4583  
Permanent link to this record
 

 
Author Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; Kværnø, S.H.; Lehtonen, H.; Niedrist, G.; Øygarden, L.; Reidsma, P.; Roggero, P.P.; Rusu, T.; Santos, C.; Seddaiu, G.; Skarbøvik, E.; Ventrella, D.; Żarski, J.; Schönhart, M. doi  openurl
  Title Impacts of climate change adaptation options on soil functions: A review of European case-studies Type Journal Article
  Year 2018 Publication Land Degradation & Development Abbreviated Journal Land Degradation & Development  
  Volume 29 Issue (up) 8 Pages 2378-2389  
  Keywords agricultural adaptation; DPSIR; regional case-studies; soil degradation; Sustainable Development Goals; Agricultural Practices; Ecosystem Services; Land Management; Netherlands; Farm; Environment; Challenges; Catchments; Framework; Nitrogen  
  Abstract Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case-studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.  
  Address 2018-10-16  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1085-3278 ISBN Medium  
  Area Expedition Conference  
  Notes XC, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5210  
Permanent link to this record
 

 
Author Mueller, L.; Schindler, U.; Shepherd, T.G.; Ball, B.C.; Smolentseva, E.; Hu, C.; Hennings, V.; Schad, P.; Rogasik, J.; Zeitz, J.; Schlindwein, S.L.; Behrendt, A.; Helming, K.; Eulenstein, F. url  doi
openurl 
  Title A framework for assessing agricultural soil quality on a global scale Type Journal Article
  Year 2012 Publication Archives of Agronomy and Soil Science Abbreviated Journal Archives of Agronomy and Soil Science  
  Volume 58 Issue (up) sup1 Pages S76-S82  
  Keywords soil quality; indicators; muencheberg soil quality rating  
  Abstract This paper provides information about a novel approach of rating agricultural soil quality (SQ) and crop yield potentials consistently over a range of spatial scales. The Muencheberg Soil Quality Rating is an indicator-based straightforward overall assessment method of agricultural SQ. It is a framework covering aspects of soil texture, structure, topography and climate which is based on 8 basic indicators and more than 12 hazard indicators. Ratings are performed by visual methods of soil evaluation. A field manual is then used to provide ratings from tables based on indicator thresholds. Finally, overall rating scores are given, ranging from 0 (worst) to 100 (best) to characterise crop yield potentials. The current approach is valid for grassland and cropland. Field tests in several countries confirmed the practicability and reliability of the method. At field scale, soil structure is a crucial, management induced criterion of agricultural SQ. At the global scale, climate controlled hazard indicators of drought risk and soil thermal regime are crucial for SQ and crop yield potentials. Final rating scores are well correlated with crop yields. We conclude that this system could be evolved for ranking and controlling agricultural SQ on a global scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0365-0340 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4589  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: