|   | 
Details
   web
Records
Author García-López, J.; Lorite, I.J.; García-Ruiz, R.; Domínguez, J.
Title Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling Type Journal Article
Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change
Volume 124 Issue (up) 1-2 Pages 147-162
Keywords winter-wheat; water-stress; irrigation management; high-temperature; oil quality; oilcrop-sun; crop model; responses; variability; growth
Abstract The determination of the impact of climate change on crop yield at a regional scale requires the development of new modelling methodologies able to generate accurate yield estimates with reduced available data. In this study, different simulation approaches for assessing yield have been evaluated. In addition to two well-known models (AquaCrop and Stewart function), a methodological proposal considering a simplified approach using an empirical model (SOM) has been included in the analysis. This empirical model was calibrated using rainfed sunflower experimental field data from three sites located in Andalusia, southern Spain, and validated using two additional locations, providing very satisfactory results compared with the other models with higher data requirements. Thus, only requiring weather data (accumulated rainfall from the beginning of the season fixed on September 1st, and maximum temperature during flowering) the approach accurately described the temporal and spatial yield variability observed (RMSE = 391 kg ha(-1)). The satisfactory results for assessing yield of sunflower under semi-arid conditions obtained in this study demonstrate the utility of empirical approaches with few data requirements, providing an excellent decision tool for climate change impact analyses at a regional scale, where available data is very limited.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009 1573-1480 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4622
Permanent link to this record
 

 
Author Popp, A.; Humpenöder, F.; Weindl, I.; Bodirsky, B.L.; Bonsch, M.; Lotze-Campen, H.; Müller, C.; Biewald, A.; Rolinski, S.; Stevanovic, M.; Dietrich, J.P.
Title Land-use protection for climate change mitigation Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue (up) 12 Pages 1095-1098
Keywords avoided deforestation; forest conservation; carbon emissions; co2 emissions; productivity; scarcity; stocks; redd
Abstract Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming(1-3). Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed, A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally’’, Here, We show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller. but still considerable potential to store carbon(5,6). We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2, until 2100 due to non-forest leakage effects. Furthermore; abandonment of agricultural hand and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, TradeM Approved no
Call Number MA @ admin @ Serial 4540
Permanent link to this record
 

 
Author Liu, B.; Asseng, S.; Müller, C.; Ewert, F.; Elliott, J.; Lobell, D. B.; Martre, P.; Ruane, A. C.; Wallach, D.; Jones, J. W.; Rosenzweig, C.; Aggarwal, P. K.; Alderman, P. D.; Anothai, J.; Basso, B.; Biernath, C.; Cammarano, D.; Challinor, A.; Deryng, D.; Sanctis, G. D.; Doltra, J.; Fereres, E.; Folberth, C.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L. A.; Izaurralde, R. C.; Jabloun, M.; Jones, C. D.; Kersebaum, K. C.; Kimball, B. A.; Koehler, A.-K.; Kumar, S. N.; Nendel, C.; O’Leary, G. J.; Olesen, J. E.; Ottman, M. J.; Palosuo, T.; Prasad, P. V. V.; Priesack, E.; Pugh, T. A. M.; Reynolds, M.; Rezaei, E. E.; Rötter, R. P.; Schmid, E.; Semenov, M. A.; Shcherbak, I.; Stehfest, E.; Stöckle, C. O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.; Waha, K.; Wall, G. W.; Wang, E.; White, J. W.; Wolf, J.; Zhao, Z.; Zhu, Y.
Title Similar estimates of temperature impacts on global wheat yield by three independent methods Type Journal Article
Year 2016 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 6 Issue (up) 12 Pages 1130-1136
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x ISBN Medium article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4965
Permanent link to this record
 

 
Author Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Prasad, P.V.V.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y.
Title Rising temperatures reduce global wheat production Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 5 Issue (up) 2 Pages 143-147
Keywords climate-change; spring wheat; dryland wheat; yield; growth; drought; heat; CO2; agriculture; adaptation
Abstract Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4550
Permanent link to this record
 

 
Author Challinor, A.; Martre, P.; Asseng, S.; Thornton, P.; Ewert, F.
Title Making the most of climate impacts ensembles Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue (up) 2 Pages 77-80
Keywords uncertainty; model; adaptation
Abstract Increasing use of regionally and globally oriented impacts studies, coordinated across international modelling groups, promises to bring about a new era in climate impacts research. Coordinated cycles of model improvement and projection are needed to make the most of this potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium Commentary
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4516
Permanent link to this record