toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Witkowska-Walczak, B.; Sławiński, C.; Bartmiński, P.; Melke, J.; Cymerman, J. url  doi
openurl 
  Title Water conductivity of arctic zone soils (Spitsbergen) Type Journal Article
  Year 2014 Publication International Agrophysics Abbreviated Journal International Agrophysics  
  Volume 28 Issue (up) 4 Pages 529-535  
  Keywords soils; arctic zone; water conductivity; grain size distribution; pore size distribution; SW spitsbergen; Svalbard; glacier; flow  
  Abstract The water conductivity of arctic zone soils derived in different micro-relief forms was determined. The greatest water conductivity at the 0-5 cm depth for the higher values of water potentials (> -7 kJ m(-3)) was shown by tundra polygons (Brunic-Turbic Cryosol, Arenic) – 904-0.09 cm day(-1), whereas the lowest were exhibited by Turbic Cryosols – 95-0.05 cm day(-1). Between -16 and -100 kJ m(-3), the water conductivity for tundra polygons rapidly decreased to 0.0001 cm day(-1), whereas their decrease for the other forms was much lower and in consequence the values were 0.007, 0.04, and 0.01 cm day(-1) for the mud boils (Turbic Cryosol (Siltic, Skeletic)), cell forms (Turbic Cryosol (Siltic, Skeletic)), and sorted circles (Turbic Cryosol (Skeletic)), respectively. In the 10-15 cm layer, the shape of water conductivity curves for the higher values of water potentials is nearly the same as for the upper layer. Similarly, the water conductivity is the highest -0.2 cm day(-1) for tundra polygons. For the lower water potentials, the differences in water conductivity increase to the decrease of soil water potential. At the lowest potential the water conductivity is the highest for sorted circles -0.02 cm day(-1) and the lowest in tundra polygons -0.00002 cm day(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2300-8725 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4642  
Permanent link to this record
 

 
Author Rusu, T. url  doi
openurl 
  Title Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage Type Journal Article
  Year 2014 Publication International Soil and Water Conservation Research Abbreviated Journal International Soil and Water Conservation Research  
  Volume 2 Issue (up) 4 Pages 42-49  
  Keywords No-tillage; Minimum tillage; Yield; Energy efficiency; Soil conservation  
  Abstract The objective of this research was to determine the capacity of a soil tillage system in soil conservation, in productivity and in energy efficiency. The minimum tillage and no-tillage systems represent good alternatives to the conventional (plough) system of soil tillage, due to their conservation effects on soil and to the good production of crops (Maize, 96%-98% of conventional tillage for minimum tillage, and 99.8% of conventional tillage for no till; Soybeans, 103%-112% of conventional tillage for minimum tillage and 117% of conventional tillage for no till; Wheat, 93%-97% of conventional tillage for minimum tillage and 117% of conventional tillage for no till. The choice of the right soil tillage system for crops in rotation help reduce energy consumption, thus for maize: 97%-98% energy consumption of conventional tillage when using minimum tillage and 91% when using no-tillage; for soybeans: 98% energy consumption of conventional tillage when using minimum tillage and 93 when using no-tillage; for wheat: 97%-98% energy consumption of conventional tillage when using minimum tillage and 92% when using no-tillage. Energy efficiency is in relation to reductions in energy use, but also might include the efficiency and impact of the tillage system on the cultivated plant. For all crops in rotation, energy efficiency (energy produced from 1 MJ consumed) was the best in no-tillage — 10.44 MJ ha− 1 for maize, 6.49 MJ ha− 1 for soybean, and 5.66 MJ ha− 1 for wheat. An analysis of energy-efficiency in agricultural systems includes the energy consumed-energy produced-energy yield comparisons, but must be supplemented by soil energy efficiency, based on the conservative effect of the agricultural system. Only then will the agricultural system be sustainable, durable in agronomic, economic and ecological terms. The implementation of minimum and no-tillage soil systems has increased the organic matter content from 2% to 7.6% and water stable aggregate content from 5.6% to 9.6%, at 0–30 cm depth, as compared to the conventional system. Accumulated water supply was higher (with 12.4%-15%) for all minimum and no-tillage systems and increased bulk density values by 0.01%-0.03% (no significant difference) While the soil fertility and the wet aggregate stability have initially been low, the effect of conservation practices on the soil characteristics led to a positive impact on the water permeability in the soil. Availability of soil moisture during the crop growth period led to a better plant watering condition. Subsequent release of conserved soil water regulated the plant water condition and soil structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-6339 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4637  
Permanent link to this record
 

 
Author Patil, R.H.; Laegdsmand, M.; Olesen, J.E.; Porter, J.R. url  openurl
  Title Soil temperature manipulation to study global warming effects in arable land: performance of buried heating-cable method Type Journal Article
  Year 2014 Publication Environment and Ecology Research Abbreviated Journal Environment and Ecology Research  
  Volume 1 Issue (up) 4 Pages 196-204  
  Keywords Climate Change; Climate Manipulation; Soil Warming; Heating Cables; Soil Temperature; Agro-Ecosystems  
  Abstract Buried heating-cable method for manipulating soil temperature was designed and tested its performance in large concrete lysimeters grown with the wheat crop in Denmark. Soil temperature in heated plots was elevated by 5℃ compared with that in control by burying heating-cable at 0.1 m depth in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control plots at 0.1 m depth while the mean seasonal rise in soil temperature in the top 0.25 m depth (plough layer) was 3℃. Soil temperature in control plots froze (≤ 0℃) for 15 and 13 days respectively at 0.05 and 0.1 m depths while it did not in heated plots during the coldest period (Nov-Apr). This study clearly showed the efficacy of buried heating-cable technique in simulating soil temperature, and thus offers a simple, effective and alternative technique to study soil biogeochemical processes under warmer climates. This technique, however, decouples below-ground soil responses from that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4632  
Permanent link to this record
 

 
Author Bojar, W.; Knopik, L.; Żarski, J.; Sławiński, C.; Baranowski, P.; Żarski, W. url  openurl
  Title Impact of extreme climate changes on the forecasted agriculture production Type Journal Article
  Year 2014 Publication Acta Agrophysica Abbreviated Journal Acta Agrophysica  
  Volume 21 Issue (up) 4 Pages 415-431  
  Keywords agricultural economics; agriculture; climate change; crop production; integrating assessments  
  Abstract The paper presents general characteristics of resources and outputs of agriculture in the Kujawsko-Pomorskie and Lubelskie Regions, based on statistical databases and literature review. Some specific features of the regions, with special consideration for the predicted extreme climate changes, are also included. Next, some statistically significant dependencies between the climatic parameters and yields of selected important crops in the abovementioned regions were worked out on the basis of empirical survey conducted in the University of Technology and Life Sciences, Bydgoszcz, and the Institute of Agrophysics in Lublin. Creating an appropriate method of forecasting long series of ten days without precipitation was necessary to find the desired dependencies. Third, some efforts were taken to make integrated assessments of forecast agricultural outputs influenced by climate extreme phenomena on the basis of the yield-precipitation relations obtained and on the data coming from wide area model regional outputs such as prices of farmland and produce.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4619  
Permanent link to this record
 

 
Author Bertocchi, L.; Vitali, A.; Lacetera, N.; Nardone, A.; Varisco, G.; Bernabucci, U. doi  openurl
  Title Seasonal variations in the composition of Holstein cow’s milk and temperature-humidity index relationship Type Journal Article
  Year 2014 Publication Animal Abbreviated Journal Animal  
  Volume 8 Issue (up) 4 Pages 667-674  
  Keywords Animal Husbandry/*methods; Animals; Cattle/*physiology; Cell Count/veterinary; Dairying; Female; Hot Temperature; Humidity; Italy; Lactation/*physiology; Milk/cytology/*physiology; Retrospective Studies; Seasons  
  Abstract A retrospective study on seasonal variations in the characteristics of cow’s milk and temperature-humidity index (THI) relationship was conducted on bulk milk data collected from 2003 to 2009. The THI relationship study was carried out on 508 613 bulk milk data items recorded in 3328 dairy farms form the Lombardy region, Italy. Temperature and relative humidity data from 40 weather stations were used to calculate THI. Milk characteristics data referred to somatic cell count (SCC), total bacterial count (TBC), fat percentage (FA%) and protein percentage (PR%). Annual, seasonal and monthly variations in milk composition were evaluated on 656 064 data items recorded in 3727 dairy farms. The model highlighted a significant association between the year, season and month, and the parameters analysed (SCC, TBC, FA%, PR%). The summer season emerged as the most critical season. Of the summer months, July presented the most critical conditions for TBC, FA% and PR%, (52 054 ± 183 655, 3.73% ± 0.35% and 3.30% ± 0.15%, respectively), and August presented higher values of SCC (369 503 ± 228 377). Each milk record was linked to THI data calculated at the nearest weather station. The analysis demonstrated a positive correlation between THI and SCC and TBC, and indicated a significant change in the slope at 57.3 and 72.8 maximum THI, respectively. The model demonstrated a negative correlation between THI and FA% and PR% and provided breakpoints in the pattern at 50.2 and 65.2 maximum THI, respectively. The results of this study indicate the presence of critical climatic thresholds for bulk tank milk composition in dairy cows. Such indications could facilitate the adoption of heat management strategies, which may ensure the health and production of dairy cows and limit related economic losses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7311 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4618  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: