|   | 
Details
   web
Records
Author Dumont, B.; Vancutsem, F.; Seutin, B.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title Simulation de la croissance du blé à l’aide de modèles écophysiologiques: Synthèse bibliographique des méthodes, potentialités et limitations Type Journal Article
Year 2012 Publication Biotechnologie, Agronomie, Société et Environnement Abbreviated Journal Biotechnologie, Agronomie, Société et Environnement
Volume 163 Issue (down) Pages 376-386
Keywords crops; growth; soil; Triticum; wheats; calibration; optimization methods
Abstract Crop models describe the growth and development of a crop interacting with its surrounding agro-environmental conditions (soil, climate and the close conditions of the plant). However, the implementation of such models remains difficult because of the high number of explanatory variables and parameters. It often happens that important discrepancies appear between measured and simulated values. This article aims to highlight the different sources of uncertainty related to the use of crop models, as well as the actual methods that allow a compensation for or, at least, a consideration of these sources of error during analysis of the model results. This article presents a literature review, which firstly synthesises the general mathematical structure of crop models. The main criteria for evaluating crop models are then described. Finally, several methods used for improving models are given. Parameter estimation methods, including frequentist and Bayesian approaches, are presented and data assimilation methods are reviewed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language French Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4584
Permanent link to this record
 

 
Author Özkan, Ş.; Hill, J.
Title Implementing innovative farm management practices on dairy farms:a review of feeding systems Type Journal Article
Year 2015 Publication Turkish Journal of Veterinary and Animal Sciences Abbreviated Journal Turkish Journal of Veterinary and Animal Sciences
Volume 39 Issue (down) Pages 1-9
Keywords australia; dairy; double-cropping; feeding system; pasture-based; profitability; forage crop systems; south-west victoria; nutritive characteristics; interannual variation; botanical composition; herbage accumulation; growth-rates; pasture; australia; cows
Abstract The Australian dairy industry relies primarily on pasture for its feed supply. However, the variability in rainfall negatively affects plant growth, leading to uncertainty in dryland feed supply, especially during periods of high milk price. New feeding (complementary) systems combining perennial ryegrass with another crop and/or pasture species may have the potential to mitigate this seasonal risk and improve productivity and profitability by providing off-season feed. To date, the majority of research studying the integration of alternative crops into pasture-based systems has focused on substitution and utilization of alternative feed sources. There has been little emphasis on the impacts of integration of forage crops into pasture-based systems. This review focuses on pasture-based feeding systems in southeastern Australia and how transitioning of systems contributes to improved productivity leading to improved profitability for dairy farmers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1300-0128 ISBN Medium Article
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4577
Permanent link to this record
 

 
Author Kersebaum, K.C.; Boote, K.J.; Jorgenson, J.S.; Nendel, C.; Bindi, M.; Frühauf, C.; Gaiser, T.; Hoogenboom, G.; Kollas, C.; Olesen, J.E.; Rötter, R.P.; Ruget, F.; Thorburn, P.J.; Trnka, M.; Wegehenkel, M.
Title Analysis and classification of data sets for calibration and validation of agro-ecosystem models Type Journal Article
Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 72 Issue (down) Pages 402-417
Keywords field experiments; data quality; crop modelling; data requirement; minimum data; software; different climatic zones; soil-moisture sensors; spatial variability; nitrogen dynamics; crop models; systems simulation; wheat yields; elevated co2; growth; field
Abstract Experimental field data are used at different levels of complexity to calibrate, validate and improve agroecosystem models to enhance their reliability for regional impact assessment. A methodological framework and software are presented to evaluate and classify data sets into four classes regarding their suitability for different modelling purposes. Weighting of inputs and variables for testing was set from the aspect of crop modelling. The software allows users to adjust weights according to their specific requirements. Background information is given for the variables with respect to their relevance for modelling and possible uncertainties. Examples are given for data sets of the different classes. The framework helps to assemble high quality data bases, to select data from data bases according to modellers requirements and gives guidelines to experimentalists for experimental design and decide on the most effective measurements to improve the usefulness of their data for modelling, statistical analysis and data assimilation. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4563
Permanent link to this record
 

 
Author Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E.
Title Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 62 Issue (down) Pages 55-64
Keywords nitrogen; leaching; organic farming; wheat; barley; climate-change; catch crops; nitrogen mineralization; winter-wheat; arable crop; european agriculture; farming systems; spring barley; cover crops; soil
Abstract The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3-N) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction cups. The effects of climate, soil and management were examined in a linear mixed model, and only parameters with significant effect (P < 0.05) were included in the final model. The model explained 61% and 47% of the variation in the square root transform of flow-weighted annual NO3-N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3-N leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop management. There were significant effects on annual N concentration and NO3-N leaching of location, rotation, previous crop and crop cover during autumn and winter. The relative effects of temperature and precipitation differed between seasons and cropping systems. A sensitivity analysis revealed that the predicted N concentration and leaching increased with increases in temperature and precipitation. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4562
Permanent link to this record
 

 
Author Coucheney, E.; Buis, S.; Launay, M.; Constantin, J.; Mary, B.; García de Cortázar-Atauri, I.; Ripoche, D.; Beaudoin, N.; Ruget, F.; &rianarisoa, K.S.; Le Bas, C.; Justes, E.; Léonard, J.
Title Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France Type Journal Article
Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 64 Issue (down) Pages 177-190
Keywords soil-crop model; stics; model performances; plant biomass; soil nitrogen; soil water; remote-sensing data; goodness-of-fit; hydrological model; simulation-models; solar-radiation; regional-scale; climate-change; generic model; data set; validation
Abstract Soil-crop models are increasingly used as predictive tools to assess yield and environmental impacts of agriculture in a growing diversity of contexts. They are however seldom evaluated at a given time over a wide domain of use. We tested here the performances of the STICS model (v8.2.2) with its standard set of parameters over a dataset covering 15 crops and a wide range of agropedoclimatic conditions in France. Model results showed a good overall accuracy, with little bias. Relative RMSE was larger for soil nitrate (49%) than for plant biomass (35%) and nitrogen (33%) and smallest for soil water (10%). Trends induced by contrasted environmental conditions and management practices were well reproduced. Finally, limited dependency of model errors on crops or environments indicated a satisfactory robustness. Such performances make STICS a valuable tool for studying the effects of changes in agro-ecosystems over the domain explored. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4554
Permanent link to this record