|   | 
Details
   web
Records
Author Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P.
Title Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift Type Journal Article
Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 20 Issue (up) 12 Pages 3686-3699
Keywords Agriculture/*methods; China; *Climate Change; Geography; *Models, Biological; *Temperature; Time Factors; Zea mays/*growth & development; adaptation; agriculture; climate change; crop; cultivar; impacts; phenology
Abstract Maize phenology observations at 112 national agro-meteorological experiment stations across China spanning the years 1981-2009 were used to investigate the spatiotemporal changes of maize phenology, as well as the relations to temperature change and cultivar shift. The greater scope of the dataset allows us to estimate the effects of temperature change and cultivar shift on maize phenology more precisely. We found that maize sowing date advanced significantly at 26.0% of stations mainly for spring maize in northwestern, southwestern and northeastern China, although delayed significantly at 8.0% of stations mainly in northeastern China and the North China Plain (NCP). Maize maturity date delayed significantly at 36.6% of stations mainly in the northeastern China and the NCP. As a result, duration of maize whole growing period (GPw) was prolonged significantly at 41.1% of stations, although mean temperature (Tmean) during GPw increased at 72.3% of stations, significantly at 19.6% of stations, and Tmean was negatively correlated with the duration of GPw at 92.9% of stations and significantly at 42.9% of stations. Once disentangling the effects of temperature change and cultivar shift with an approach based on accumulated thermal development unit, we found that increase in temperature advanced heading date and maturity date and reduced the duration of GPw at 81.3%, 82.1% and 83.9% of stations on average by 3.2, 6.0 and 3.5 days/decade, respectively. By contrast, cultivar shift delayed heading date and maturity date and prolonged the duration of GPw at 75.0%, 94.6% and 92.9% of stations on average by 1.5, 6.5 and 6.5 days/decade, respectively. Our results suggest that maize production is adapting to ongoing climate change by shift of sowing date and adoption of cultivars with longer growing period. The spatiotemporal changes of maize phenology presented here can further guide the development of adaptation options for maize production in near future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4544
Permanent link to this record
 

 
Author Schauberger, B.; Rolinski, S.; Müller, C.
Title A network-based approach for semi-quantitative knowledge mining and its application to yield variability Type Journal Article
Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 11 Issue (up) 12 Pages 123001
Keywords yield variability; crop models; interaction network; plant process; wheat; maize; rice; Global Food Security; Climate-Change; Crop Production; Stress Tolerance; Wheat Yields; Heat-Stress; Temperature Variability; Environmental-Factors; United-States; Elevated CO2
Abstract Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. Asystematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
Address 2017-04-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4942
Permanent link to this record
 

 
Author Ponti, L.; Gutierrez, A.P.; Ruti, P.M.; Dell’Aquila, A.
Title Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers Type Journal Article
Year 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 111 Issue (up) 15 Pages 5598-5603
Keywords Animals; *Biodiversity; *Climate Change; Conservation of Natural Resources/*trends; Crops, Agricultural/*economics/physiology; Geography; Host-Parasite Interactions; Mediterranean Region; Models, Biological; Models, Economic; Olea/*parasitology/*physiology; Tephritidae/*physiology; Olea europaea; desertification; ecological impacts; economic impacts; species interactions
Abstract The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 1091-6490 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4539
Permanent link to this record
 

 
Author Mansouri, M.; Dumont, B.; Leemans, V.; Destain, M.-F.
Title Bayesian methods for predicting LAI and soil water content Type Journal Article
Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.
Volume 15 Issue (up) 2 Pages 184-201
Keywords crop model; bayes; data assimilation; extended kalman filtering; particle filtering; variational filtering; leaf-area index; parameter-estimation; crop models; moisture; instruments; management; sensors; state
Abstract LAI of winter wheat (Triticum aestivum L.) and soil water content of the topsoil (200 mm) and of the subsoil (500 mm) were considered as state variables of a dynamic soil-crop system. This system was assumed to progress according to a Bayesian probabilistic state space model, in which real values of LAI and soil water content were daily introduced in order to correct the model trajectory and reach better future evolution. The chosen crop model was mini STICS which can reduce the computing and execution times while ensuring the robustness of data processing and estimation. To predict simultaneously state variables and model parameters in this non-linear environment, three techniques were used: extended Kalman filtering (EKF), particle filtering (PF), and variational filtering (VF). The significantly improved performance of the VF method when compared to EKF and PF is demonstrated. The variational filter has a low computational complexity and the convergence speed of states and parameters estimation can be adjusted independently. Detailed case studies demonstrated that the root mean square error of the three estimated states (LAI and soil water content of two soil layers) was smaller and that the convergence of all considered parameters was ensured when using VF. Assimilating measurements in a crop model allows accurate prediction of LAI and soil water content at a local scale. As these biophysical properties are key parameters in the crop-plant system characterization, the system has the potential to be used in precision farming to aid farmers and decision makers in developing strategies for site-specific management of inputs, such as fertilizers and water irrigation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-2256 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4629
Permanent link to this record
 

 
Author Perego, A.; Giussani, A.; Fumagalli, M.; Sanna, M.; Chiodini, M.; Carozzi, M.; Alfieri, L.; Brenna, S.; Acutis, M.
Title Crop rotation, fertilizer types and application timing affecting nitrogen leaching in nitrate vulnerable zones in Po Valley Type Journal Article
Year 2013 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology
Volume 3 Issue (up) 2 Pages 39-50
Keywords nitrogen fertilization; crop simulation model; nitrate leaching; crop rotation; reduce ammonia losses; 4 cultivation systems; mineral nitrogen; maize; soil; slurry; simulation; model; water; groundwater
Abstract A critical analysis was performed to evaluate the potential risk of nitrate leaching towards groundwater in three Nitrate Vulnerable Zones (NVZs) of the Lombardia plain by applying the ARMOSA crop simulation model over a 20 years period (1988-2007). Each studied area was characterized by (i) two representative soil types, (ii) a meteorological data set, (iii) four crop rotations according to the regional land use, (iv) organic N load, calculated on the basis of livestock density. We simulated 3 scenarios defined by different fertilization time and amount of mineral and organic fertilizers. The A scenario involved no limitation in organic N application, while under the B and C scenarios the N organic amount was 170 and 250 kg N ha(-1)y(-1), respectively. The C scenario was compliant with the requirement of the 2012 Italian derogation, allowing only the use of organic manure with an efficiency greater than 65%. The model results highlighted that nitrate leaching was significantly reduced passing from the A scenario to the B and C ones (p<0.01); on average nitrogen losses decreased by up to 53% from A to B and up to 75% from A to C.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2038-5625 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4611
Permanent link to this record