toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yin, X.G.; Olesen, J.E.; Wang, M.; Öztürk, I.; Chen, F. url  doi
openurl 
  Title Climate effects on crop yields in the Northeast Farming Region of China during 1961–2010 Type Journal Article
  Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 154 Issue (down) 07 Pages 1190-1208  
  Keywords  
  Abstract Crop production in the Northeast Farming Region of China (NFR) is affected considerably by variation in climatic conditions. Data on crop yield and weather conditions from a number of agro-meteorological stations in NFR were used in a mixed linear model to evaluate the impacts of climatic variables on the yield of maize (Zea mays L.), rice (Oryza sativa L.), soybean (Glycine max L. Merr.) and spring wheat (Triticum aestivum L.) in different crop growth phases. The crop growing season was divided into three growth phases based on the average crop phenological dates from records covering 1981 and 2010 at each station, comprising pre-flowering (from sowing to just prior to flowering), flowering (20 days around flowering) and post-flowering (10 days after flowering to maturity). The climatic variables were mean minimum temperature, thermal time (which is used to indicate changes in the length of growth cycles), average daily solar radiation, accumulated precipitation, aridity index (which is used to assess drought stress) and heat degree-days index (HDD) (which is used to indicate heat stress) were calculated for each growth phase and year. Over the 1961–2010 period, the minimum temperature increased significantly in each crop growth phase, the thermal time increased significantly in the pre-flowering phase of each crop and in the post-flowering phases of maize, rice and soybean, and HDD increased significantly in the pre-flowering phase of soybean and wheat. Average solar radiation decreased significantly in the pre-flowering phase of all four crops and in the flowering phase of soybean and wheat. Precipitation increased during the pre-flowering phase leading to less aridity, whereas reduced precipitation in the flowering and post-flowering phases enhanced aridity. Statistical analyses indicated that higher minimum temperature was beneficial for maize, rice and soybean yields, whereas increased temperature reduced wheat yield. Higher solar radiation in the pre-flowering phase was beneficial for maize yield, in the post-flowering phase for wheat yield, whereas higher solar radiation in the flowering phase reduced rice yield. Increased aridity in the pre-flowering and flowering phases severely reduced maize yield, higher aridity in the flowering and post-flowering phases reduced rice yield, and aridity in all growth phases reduced soybean and wheat yields. Higher HDD in all growth phases reduced maize and soybean yield and HDD in the pre-flowering phase reduced rice yield. Such effects suggest that projected future climate change may have marked effects on crop yield through effects of several climatic variables, calling for adaptation measures such as breeding and changes in crop, soil and agricultural water management.  
  Address 2016-09-30  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4782  
Permanent link to this record
 

 
Author Cammarano, D.; Rötter, P.; Ewert, F.; Palosuo, T.; Bindi, M.; Kersebaum, K.C.; Olesen, J.E.; Trnka, M.; van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Angulo, C.; Gaiser, T.; Nendel, C.; Martre, P.; de Wit, A. url  openurl
  Title Challenges for Agro-Ecosystem Modelling in Climate Change Risk Assessment for major European Crops and Farming systems Type Conference Article
  Year 2013 Publication Abbreviated Journal  
  Volume Issue (down) Pages 555-564  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Impacts World 2013, International Conference on Climate Change Effects, Potsdam, Germany, 2013-05-27 to 2013-05-30  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2765  
Permanent link to this record
 

 
Author Webber, H.; Martre, P.; Asseng, S.; Kimball, B.; White, J.; Ottman, M.; Wall, G.W.; De Sanctis, G.; Doltra, J.; Grant, R.; Kassie, B.; Maiorano, A.; Olesen, J.E.; Ripoche, D.; Rezaei, E.E.; Semenov, M.A.; Stratonovitch, P.; Ewert, F. doi  openurl
  Title Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison Type Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 202 Issue (down) Pages 21-35  
  Keywords Crop model comparison; Canopy temperature; Heat stress; Wheat  
  Abstract Even brief periods of high temperatures occurring around flowering and during grain filling can severely reduce grain yield in cereals. Recently, ecophysiological and crop models have begun to represent such phenomena. Most models use air temperature (Tair) in their heat stress responses despite evidence that crop canopy temperature (Tc) better explains grain yield losses. Tc can deviate significantly from Tair based on climatic factors and the crop water status. The broad objective of this study was to evaluate whether simulation of Tc improves the ability of crop models to simulate heat stress impacts on wheat under irrigated conditions. Nine process-based models, each using one of three broad approaches (empirical, EMP; energy balance assuming neutral atmospheric stability, EBN; and energy balance correcting for the atmospheric stability conditions, EBSC) to simulate Tc, simulated grain yield under a range of temperature conditions. The models varied widely in their ability to reproduce the measured Tc with the commonly used EBN models performing much worse than either EMP or EBSC. Use of Tc to account for heat stress effects did improve simulations compared to using only Tair to a relatively minor extent, but the models that additionally use Tc on various other processes as well did not have better yield simulations. Models that simulated yield well under heat stress had varying skill in simulating Tc. For example, the EBN models had very poor simulations of Tc but performed very well in simulating grain yield. These results highlight the need to more systematically understand and model heat stress events in wheat.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4824  
Permanent link to this record
 

 
Author Olesen, J.E. url  doi
isbn  openurl
  Title Socio-economic impacts – agricultural systems Type Book Chapter
  Year 2016 Publication Abbreviated Journal  
  Volume Issue (down) Pages 397-407  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Quante, M.; Colijn, F.  
  Language Summary Language Original Title  
  Series Editor Series Title North Sea Region climate change assessment Abbreviated Series Title  
  Series Volume Regional Climate Studies Series Issue Edition  
  ISSN 1862-0248 (series) ISBN 978-3-319-39745-0 (eBook), 978-3-319-39745-0 (hardcover) Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 4828  
Permanent link to this record
 

 
Author Maiorano, A.; Martre, P.; Asseng, S.; Ewert, F.; Müller, C.; Rötter, R.P.; Ruane, A.C.; Semenov, M.A.; Wallach, D.; Wang, E.; Alderman, P.D.; Kassie, B.T.; Biernath, C.; Basso, B.; Cammarano, D.; Challinor, A.J.; Doltra, J.; Dumont, B.; Rezaei, E.E.; Gayler, S.; Kersebaum, K.C.; Kimball, B.A.; Koehler, A.-K.; Liu, B.; O’Leary, G.J.; Olesen, J.E.; Ottman, M.J.; Priesack, E.; Reynolds, M.; Stratonovitch, P.; Streck, T.; Thorburn, P.J.; Waha, K.; Wall, G.W.; White, J.W.; Zhao, Z.; Zhu, Y. doi  openurl
  Title Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 202 Issue (down) Pages 5-20  
  Keywords Impact uncertainty; High temperature; Model improvement; Multi-model ensemble; Wheat crop model  
  Abstract To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMEs) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA Hot Serial Cereal experiment (calibration data set). Simulation results from before and after model improvement were then evaluated with independent field experiments from a CIMMYT world-wide field trial network (evaluation data set). Model improvements decreased the variation (10th to 90th model ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures >24 °C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME uncertainty range by 27% increased MME prediction skills by 47%. Results suggest that the mean level of variation observed in field experiments and used as a benchmark can be reached with half the number of models in the MME. Improving crop models is therefore important to increase the certainty of model-based impact assessments and allow more practical, i.e. smaller MMEs to be used effectively.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Language Summary Language Newsletter July 2016 Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area CropM Expedition Conference  
  Notes CropMwp;wos; ft=macsur; wsnot_yet; Approved no  
  Call Number MA @ admin @ Serial 4776  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: