toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shrestha, S.; Abdalla, M.; Hennessy, T.; Forristal, D.; Jones, M.B. url  doi
openurl 
  Title Irish farms under climate change – is there a regional variation on farm responses? Type Journal Article
  Year 2015 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 153 Issue (down) 03 Pages 385-398  
  Keywords change impacts; elevated co2; potential impacts; maize production; united-states; winter-wheat; plant-growth; adaptation; ireland; yield  
  Abstract The current paper aims to determine regional impacts of climate change on Irish farms examining the variation in farm responses. A set of crop growth models were used to determine crop and grass yields under a baseline scenario and a future climate scenario. These crop and grass yields were used along with farm-level data taken from the Irish National Farm Survey in an optimizing farm-level (farm-level linear programming) model, which maximizes farm profits under limiting resources. A change in farm net margins under the climate change scenario compared to the baseline scenario was taken as a measure to determine the effect of climate change on farms. The growth models suggested a decrease in cereal crop yields (up to 9%) but substantial increase in yields of forage maize (up to 97%) and grass (up to 56%) in all regions. Farms in the border, midlands and south-east regions suffered, whereas farms in all other regions generally fared better under the climate change scenario used in the current study. The results suggest that there is a regional variability between farms in their responses to the climate change scenario. Although substituting concentrate feed with grass feeds is the main adaptation on all livestock farms, the extent of such substitution differs between farms in different regions. For example, large dairy farms in the south-east region adopted total substitution of concentrate feed while similar dairy farms in the south-west region opted to replace only 0.30 of concentrate feed. Farms in most of the regions benefitted from increasing stocking rate, except for sheep farms in the border and dairy farms in the south-east regions. The tillage farms in the mid-east region responded to the climate change scenario by shifting arable production to beef production on farms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4542  
Permanent link to this record
 

 
Author Hakala, K.; Jauhiainen, L.; Himanen, S.J.; RÖTter, R.; Salo, T.; Kahiluoto, H. doi  openurl
  Title Sensitivity of barley varieties to weather in Finland Type Journal Article
  Year 2012 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 150 Issue (down) 02 Pages 145-160  
  Keywords climate-change; winter-wheat; spring wheat; reproductive growth; high-temperatures; changing climate; crop production; increased CO2; yield; tolerance  
  Abstract Global climate change is predicted to shift seasonal temperature and precipitation patterns. An increasing frequency of extreme weather events such as heat waves and prolonged droughts is predicted, but there are high levels of uncertainty about the nature of local changes. Crop adaptation will be important in reducing potential damage to agriculture. Crop diversity may enhance resilience to climate variability and changes that are difficult to predict. Therefore, there has to be sufficient diversity within the set of available cultivars in response to weather parameters critical for yield formation. To determine the scale of such ‘weather response diversity’ within barley (Hordeum vulgare L.), an important crop in northern conditions, the yield responses of a wide range of modern and historical varieties were analysed according to a well-defined set of critical agro-meteorological variables. The Finnish long-term dataset of MTT Official Variety Trials was used together with historical weather records of the Finnish Meteorological Institute. The foci of the analysis were firstly to describe the general response of barley to different weather conditions and secondly to reveal the diversity among varieties in the sensitivity to each weather variable. It was established that barley yields were frequently reduced by drought or excessive rain early in the season, by high temperatures at around heading, and by accelerated temperature sum accumulation rates during periods 2 weeks before heading and between heading and yellow ripeness. Low temperatures early in the season increased yields, but frost during the first 4 weeks after sowing had no effect. After canopy establishment, higher precipitation on average resulted in higher yields. In a cultivar-specific analysis, it was found that there were differences in responses to all but three of the studied climatic variables: waterlogging and drought early in the season and temperature sum accumulation rate before heading. The results suggest that low temperatures early in the season, delayed sowing, rain 3-7 weeks after sowing, a temperature change 3-4 weeks after sowing, a high temperature sum accumulation rate from heading to yellow ripeness and high temperatures (25 degrees C) at around heading could mostly be addressed by exploiting the traits found in the range of varieties included in the present study. However, new technology and novel genetic material are needed to enable crops to withstand periods of excessive rain or drought early in the season and to enhance performance under increased temperature sum accumulation rates prior to heading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4586  
Permanent link to this record
 

 
Author Klosterhalfen, A.; Herbst, M.; Weihermueller, L.; Graf, A.; Schmidt, M.; Stadler, A.; Schneider, K.; Subke, J.-A.; Huisman, J.A.; Vereecken, H. doi  openurl
  Title Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands Type Journal Article
  Year 2017 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 363 Issue (down) Pages 137-156  
  Keywords AgroC; Soil respiration; Carbon balance; Winter wheat; Grassland; NEE; LOLIUM-PERENNE L; SOIL HETEROTROPHIC RESPIRATION; LAND-SURFACE MODELS; EDDY-COVARIANCE; WINTER-WHEAT; CARBOHYDRATE CONTENT; TURNOVER MODEL; ROTHC MODEL; ROOT RATIOS; CO2 EFFLUX  
  Abstract Croplands play an important role in the carbon budget of many regions. However, the estimation of their carbon balance remains difficult due to diversity and complexity of the processes involved. We report the coupling of a one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) to predict the net ecosystem exchange (NEE) of carbon. The coupled model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was sufficient with a model efficiency above 0.78 and a correlation coefficient above 0.91 for NEE. In a second step, AgroC was optimized with eddy covariance NEE measurements to examine the effect of different objective functions, constraints, and data-transformations on estimated NEE. It was found that NEE showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. In particular, both positive and negative day- and nighttime fluxes were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting cumulative NEE over simulation time period differed substantially. Therefore, it is concluded that data transformations, definitions of objective functions, and data sources have to be considered cautiously when a terrestrial ecosystem model is used to determine NEE by means of eddy covariance measurements. (C) 2017 Elsevier B.V. All rights reserved.  
  Address 2017-11-09  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 5216  
Permanent link to this record
 

 
Author Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G. de; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L. url  doi
openurl 
  Title Crop rotation modelling—A European model intercomparison Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 70 Issue (down) Pages 98-111  
  Keywords Model ensemble; Crop simulation models; Catch crop; Intermediate crop; Treatment; Multi-year; long-term experiment; climate-change; wheat production; n-fertilization; systems simulation; nitrogen dynamics; tillage intensity; winter-wheat; soil carbon; growth  
  Abstract • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.

Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4660  
Permanent link to this record
 

 
Author Lai, R.; Arca, P.; Lagomarsino, A.; Cappai, C.; Seddaiu, G.; Demurtas, C.E.; Roggero, P.P. doi  openurl
  Title Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system Type Journal Article
  Year 2017 Publication Catena Abbreviated Journal Catena  
  Volume 151 Issue (down) Pages 202-212  
  Keywords Biomass; C turnover; GHG emission; Microbial activity; Soil moisture; Organic-Matter Dynamics; Co2 Efflux; N Fertilization; Forage Systems; Winter-Wheat; Nitrogen; Temperature; Forest; Water; Root  
  Abstract Agronomic research is important to identify suitable options for improving soil carbon (C) sequestration and reducing soil CO2 emissions. Therefore, the objectives of this study were i) to analyse the on-farm effects of different nitrogen fertilization sources on soil respiration, ii) to explore the effect of fertilization on soil respiration sensitivity to soil temperature (T) and iii) to assess the effect of the different fertilization regimes on the soil C balance. We hypothesized that i) the soil CO2 emission dynamics in Mediterranean irrigated cropping systems were mainly affected by fertilization management and T and ii) fertilization affected the soil C budget via different C inputs and CO2 efflux. Four fertilization systems (farmyard manure, cattle slurry, cattle slurry + mineral, and mineral) were compared in a double-crop rotation based on silage maize (Zea mays L) and a mixture of Italian ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L). The research was performed in the dairy district of Arborea, in the coastal zone of Sardinia (Italy), from May 2011 to May 2012. The soil was a Psammentic Palexeralfs with a sandy texture (940 g sand kg(-1)). The soil total respiration (SR), heterotrophic respiration (Rh), T and soil water content (SWC) were simultaneously measured in situ. The soil C balance was computed considering the Rh C losses and the soil C inputs from fertilizer and crop residues. The results showed that the maximum soil CO2 emission rates soon after the application of organic fertilizer reached values up to 121,1111 1 111(-2) s(-1). On average, the manure fertilizer showed significantly higher CO2 emissions, which resulted in a negative annual C balance (-2.9 t ha(-1)). T also affected the soil respiration temporal dynamics during the summer, consistently with results obtained in other temperate climatic regions that are characterized by wet summers and contrary to results from rainfed Mediterranean systems where the summer SR and Rh are constrained by the low SWC. The sensitivity of soil respiration to temperature significantly increased with C input from fertilizer. In conclusion, this research supported the hypotheses tested. Furthermore, the results indicated that i) soil CO2 efflux was significantly affected by fertilization management and T, and ii) fertilization with manure increased the soil respiration and resulted in a significantly negative soil C budget. This latter finding could be primarily explained by a reduction in productivity and, consequently, in crop residue with organic fertilization alone as compared to mineral, by the favourable SWC and T for mineralization, and by the sandy soil texture, which hindered the formation of macroaggregates and hence soil C stabilization, making fertilizer organic inputs highly susceptible to mineralization. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2017-03-16  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0341-8162 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4939  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: