|   | 
Details
   web
Records
Author Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; Kværnø, S.H.; Lehtonen, H.; Niedrist, G.; Øygarden, L.; Reidsma, P.; Roggero, P.P.; Rusu, T.; Santos, C.; Seddaiu, G.; Skarbøvik, E.; Ventrella, D.; Żarski, J.; Schönhart, M.
Title Impacts of climate change adaptation options on soil functions: A review of European case-studies Type Journal Article
Year 2018 Publication Land Degradation & Development Abbreviated Journal Land Degradation & Development
Volume 29 Issue (down) 8 Pages 2378-2389
Keywords agricultural adaptation; DPSIR; regional case-studies; soil degradation; Sustainable Development Goals; Agricultural Practices; Ecosystem Services; Land Management; Netherlands; Farm; Environment; Challenges; Catchments; Framework; Nitrogen
Abstract Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case-studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.
Address 2018-10-16
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1085-3278 ISBN Medium
Area Expedition Conference
Notes XC, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5210
Permanent link to this record
 

 
Author Francioni, M.; D’Ottavio, P.; Lai, R.; Trozzo, L.; Budimir, K.; Foresi, L.; Kishimoto-Mo, A.W.; Baldoni, N.; Allegrezza, M.; Tesei, G.; Toderi, M.
Title Seasonal Soil Respiration Dynamics and Carbon-Stock Variations in Mountain Permanent Grasslands Compared to Arable Lands Type Journal Article
Year 2019 Publication Agriculture-Basel Abbreviated Journal Agriculture-Basel
Volume 9 Issue (down) 8 Pages 165
Keywords ecosystem services; C stock; CO2; GHG; land use change; Q(10); temperature; vegetation; patterns; emissions; climate
Abstract Permanent grasslands provide a wide array of ecosystem services. Despite this, few studies have investigated grassland carbon (C) dynamics, and especially those related to the effects of land-use changes. This study aimed to determine whether the land-use change from permanent grassland to arable lands resulted in variations in the soil C stock, and whether such variations were due to increased soil respiration or to management practices. To address this, seasonal variations of soil respiration, sensitivity of soil respiration to soil temperature (Q(10)), and soil C stock variations generated by land-use changes were analyzed in a temperate mountain area of central Italy. The comparisons were performed for a permanent grassland and two adjacent fields, one cultivated with lentil and the other with emmer, during the 2015 crop year. Soil respiration and its heterotrophic component showed different spatial and temporal dynamics. Annual cumulative soil respiration rates were 6.05, 5.05 and 3.99 t C ha(-1) year(-1) for grassland, lentil and emmer, respectively. Both soil respiration and heterotrophic soil respiration were positively correlated with soil temperature at 10 cm depth. Derived Q(10) values were from 2.23 to 6.05 for soil respiration, and from 1.82 to 4.06 for heterotrophic respiration. Soil C stock at over 0.2 m in depth was 93.56, 48.74 and 46.80 t C ha(-1) for grassland, lentil and emmer, respectively. The land-use changes from permanent grassland to arable land lead to depletion in terms of the soil C stock due to water soil erosion. A more general evaluation appears necessary to determine the multiple effects of this land-use change at the landscape scale.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5229
Permanent link to this record
 

 
Author Fan, F.; Henriksen, C.B.; Porter, J.
Title Long-term effects of conversion to organic farming on ecosystem services – a model simulation case study and on-farm case study in Denmark Type Journal Article
Year 2018 Publication Agroecology and Sustainable Food Systems Abbreviated Journal Agroecology and Sustainable Food Systems
Volume 42 Issue (down) 5 Pages 504-529
Keywords Long-term; conversion; economic value; ecosystem services; organic farming; agricultural policytrade-offs; Greenhouse-Gas Emissions; Former Arable Soils; Daisy Model; Crop; Production; Conventional Agriculture; Straw Incorporation; Production; Systems; Nitrogen Dynamics; Climate-Change; Water-Balance
Abstract Organic agriculture aims to produce food while establishing an ecological balance to augment ecosystem services (ES) and has been rapidly expanding in the world since the 1980s. Recently, however, in several European countries, including Denmark, organic farmers have converted back to conventional farming. Hence, understanding how agricultural ES are affected by the number of years since conversion to organic farming is imperative for policy makers to guide future agricultural policy. In order to investigate the long-term effects of conversion to organic farming on ES we performed i) a model simulation case study by applying the Daisy model to simulate 14 different conversion scenarios for a Danish farm during a 65 year period with increasing number of years under organic farming, and ii) an on-farm case study in Denmark with one conventional farm, one organic farm under conversion, and three organic farms converted 10, 15 and 58 years ago, respectively. Both the model simulation case study and the on-farm case study showed that non-marketable ES values increased with increasing number of years under organic farming. Trade-offs between marketable and non-marketable ES were not evident, since also marketable ES values generally showed an increasing trend, except when the price difference between organic and conventional products in the model simulation study was the smallest, and when an alfalfa pre-crop in the on-farm case study resulted in a significantly higher level of plant available nitrogen, which boosted the yield and the associated marketable ES of the subsequent winter rye crop. These results indicate a possible benefit of preserving long-term organic farms and could be used to argue for agricultural policy interventions to offset further reduction in the number of organic farms or the land area under organic farming.
Address 2018-05-03
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-3565 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5198
Permanent link to this record
 

 
Author Legarrea, S.; Betancourt, M.; Plaza, M.; Fraile, A.; García-Arenal, F.; Fereres, A.
Title Dynamics of nonpersistent aphid-borne viruses in lettuce crops covered with UV-absorbing nets Type Journal Article
Year 2012 Publication Virus Research Abbreviated Journal Virus Res.
Volume 165 Issue (down) 1 Pages 1-8
Keywords Absorption; Animals; Aphids/growth & development/radiation effects/*virology; Insect Control/instrumentation/*methods; Insect Vectors/growth & development/radiation effects/*virology; Lettuce/parasitology/*virology; Plant Diseases/prevention & control/*virology; Plant Viruses/*physiology; Protective Devices/virology; Ultraviolet Rays
Abstract Aphid-transmitted viruses frequently cause severe epidemics in lettuce grown under Mediterranean climates. Spatio-temporal dynamics of aphid-transmitted viruses and its vector were studied on lettuce (Lactuca sativa L.) grown under tunnels covered by two types of nets: a commercial UV-absorbing net (Bionet) and a Standard net. A group of plants infected by Cucumber mosaic virus (CMV, family Bromoviridae, genus Cucumovirus) and Lettuce mosaic virus (LMV, family Potyviridae, genus Potyvirus) was transplanted in each plot. The same virus-infected source plants were artificially infested by the aphid Macrosiphum euphorbiae (Thomas). Secondary spread of insects was weekly monitored and plants were sampled for the detection of viruses every two weeks. In 2008, the infection rate of both CMV and LMV were lower under the Bionet than under the Standard cover, probably due to the lower population density and lower dispersal rate achieved by M. euphorbiae. However, during spring of 2009, significant differences in the rate of infection between the two covers were only found for LMV six weeks after transplant. The spatial distribution of the viruses analysed by SADIE methodology was “at random”, and it was not associated to the spatial pattern of the vector. The results obtained are discussed analyzing the wide range of interactions that occurred among UV-radiation, host plant, viruses, insect vector and environmental conditions. Our results show that UV-absorbing nets can be recommended as a component of an integrated disease management program to reduce secondary spread of lettuce viruses, although not as a control measure on its own.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1702 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4475
Permanent link to this record
 

 
Author D’Ottavio, P.; Francioni, M.; Trozzo, L.; Sedic, E.; Budimir, K.; Avanzolini, P.; Trombetta, M.F.; Porqueddu, C.; Santilocchi, R.; Toderi, M.
Title Trends and approaches in the analysis of ecosystem services provided by grazing systems: A review Type Journal Article
Year 2018 Publication Grass and Forage Science Abbreviated Journal Grass Forage Sci.
Volume 73 Issue (down) 1 Pages 15-25
Keywords climate regulation; food, habitat services; land degradation prevention; moderation of extreme events; natural (landscape) heritage; primary production; regulation of water flows; water quality regulation; Grassland Management; Plant-Communities; Land Degradation; Inner-Mongolia; Trade-Offs; Biodiversity; Provision; Impact; Consequences; Conservation
Abstract The ecosystem services (ES) approach is a framework for describing the benefits of nature to human well-being, and this has become a popular instrument for assessment and evaluation of ecosystems and their functions. Grazing lands can provide a wide array of ES that depend on their management practices and intensity. This article reviews the trends and approaches used in the analysis of some relevant ES provided by grazing systems, in line with the framework principles of the Millennium Ecosystem Assessment (MA). The scientific literature provides reports of many studies on ES in general, but the search here focused on grazing systems, which returned only sixty-two papers. This review of published papers highlights that: (i) in some papers, the concept of ES as defined by the MA is misunderstood (e.g., lack of anthropocentric vision); (ii) 34% of the papers dealt only with one ES, which neglects the need for the multisectoral approach suggested by the MA; (iii) few papers included stakeholder involvement to improve local decision-making processes; (iv) cultural ES have been poorly studied despite being considered the most relevant for local and general stakeholders; and (v) stakeholder awareness of well-being as provided by ES in grazing systems can foster both agri-environmental schemes and the willingness to pay for these services.
Address 2018-03-02
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0142-5242 ISBN Medium Review
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5191
Permanent link to this record