|   | 
Details
   web
Records
Author Luo, K.; Tao, F.; Moiwo, J.P.; Xiao, D.
Title Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades Type Journal Article
Year 2016 Publication Scientific Reports Abbreviated Journal Scientific Reports
Volume 6 Issue (up) Pages 33704
Keywords water-resources; groundwater recharge; stream-flow; surface-energy; china; runoff; impact; evapotranspiration; cover; availability; Science & Technology – Other Topics
Abstract The contributions of climate and land use change (LUCC) to hydrological change in Heihe River Basin (HRB), Northwest China were quantified using detailed climatic, land use and hydrological data, along with the process-based SWAT (Soil and Water Assessment Tool) hydrological model. The results showed that for the 1980s, the changes in the basin hydrological change were due more to LUCC (74.5%) than to climate change (21.3%). While LUCC accounted for 60.7% of the changes in the basin hydrological change in the 1990s, climate change explained 57.3% of that change. For the 2000s, climate change contributed 57.7% to hydrological change in the HRB and LUCC contributed to the remaining 42.0%. Spatially, climate had the largest effect on the hydrology in the upstream region of HRB, contributing 55.8%, 61.0% and 92.7% in the 1980s, 1990s and 2000s, respectively. LUCC had the largest effect on the hydrology in the middle-stream region of HRB, contributing 92.3%, 79.4% and 92.8% in the 1980s, 1990s and 2000s, respectively. Interestingly, the contribution of LUCC to hydrological change in the upstream, middle-stream and downstream regions and the entire HRB declined continually over the past 30 years. This was the complete reverse (a sharp increase) of the contribution of climate change to hydrological change in HRB.
Address 2016-10-18
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4668
Permanent link to this record
 

 
Author Graß, R.; Thies, B.; Kersebaum, K.-C.; Wachendorf, M.
Title Simulating dry matter yield of two cropping systems with the simulation model HERMES to evaluate impact of future climate change Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 70 Issue (up) Pages 1-10
Keywords Climate change; Double cropping system; Biomass yield; Sowing and; harvesting dates; mean-square error; nitrogen dynamics; wheat production; carbon-dioxide; soil; water; management; sunflower; responses; crops
Abstract Regionalized model calculations showed increased rainfall and temperatures in winter and less precipitation and higher temperatures in summer due to climate change effects in the future for numerous countries in the northern hemisphere. Furthermore, model simulations predicted enhanced weather variability with an increased risk of yield losses and reduced yield stability. Recently, double cropping systems (DCS) were suggested as an environmental friendly and productive adaptation strategy with increased yield stability. This paper reviews the potential benefit of four DCS (rye (Secale cereale L.) as first crop and maize (Zea mays L.), sunflower (Helianthus annuus L.), sorghum (Sorghum sudanense L. x Sorghum bicolor L.) and sudan grass (S. sudanense L.) as second crops) in comparison with four conventional sole cropping systems (SCS) (maize, sunflower, sorghum and sudan grass) with regard to dry matter (DM) yield and soil water under conditions of climate change. We used the agro-ecosystem model HERMES for simulating these variables until the year 2100. The investigated crops sunflower, sorghum and sudan grass were parameterised first for HERMES achieving a satisfying performance. Results showed always higher DM yields per year of DCS compared with SCS. This was mainly caused by yield increases of the first crop winter rye harvested at the stage of milk ripeness. As a winter hardy crop, rye will benefit from increased precipitation and higher temperatures during winter months as well as from extended growth periods with an earlier onset in spring and an increase of growing days. Furthermore, rye is able to use the increased winter humidity for its spring growth in an efficient way. By contrast, model simulations showed that summer crops will be affected by reduced precipitation and higher temperatures during summer month for periods from 2050 onwards with the consequence of reduced yields. This yield reduction was found for all summer crops both in conventional sole crop and in DCS. Preponed harvesting of first crop winter rye as a consequence of earlier onset of growth period in spring under prospective climatic conditions lead to yield decrease, which could not be equalised by preponed sowing of second crops and extension of their growth period. Hence, total annual yield of both crops together decreased. The modification of sowing and harvesting dates as an adaptation strategy requires further research with the use of more holistic simulation models. To summarize, DCS may provide a promising adaptation strategy to effects of climate change with a substantial stabilisation of crop yields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4659
Permanent link to this record
 

 
Author Biewald, A.; Rolinski, S.; Lotze-Campen, H.; Schmitz, C.; Dietrich, J.P.
Title Valuing the impact of trade on local blue water Type Journal Article
Year 2014 Publication Ecological Economics Abbreviated Journal Ecol. Econ.
Volume 101 Issue (up) Pages 43-53
Keywords virtual water; blue and green water; water scarcity; agricultural trade; global vegetation model; virtual water; crop trade; resources; scarcity; food; footprints; products; flows; green
Abstract International trade of agricultural goods impacts local water scarcity. By quantifying the effect of trade on crop production on grid-cell level and combining it with cell- and crop-specific virtual water contents, we are able to determine green and blue water consumption and savings. Connecting the information on trade-related blue water usage to water shadow prices gives us the possibility to value the impact of international food crop trade on local blue water resources. To determine the trade-related value of the blue water usage, we employ two models: first, an economic land- and water-use model, simulating agricultural trade, production and water-shadow prices and second, a global vegetation and agricultural model, modeling the blue and green virtual water content of the traded crops. Our study found that globally, the international trade of food crops saves blue water worth 2.4 billion US$. This net saving occurs despite the fact that Europe exports virtual blue water in food crops worth 3.1 billion US$. Countries in the Middle East and South Asia profit from trade by importing water intensive crops, countries in Southern Europe on the other hand export water intensive agricultural goods from water scarce sites, deteriorating local water scarcity. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8009 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4512
Permanent link to this record
 

 
Author Francone, C.; Katul, G.G.; Cassardo, C.; Richiardone, R.
Title Turbulent transport efficiency and the ejection-sweep motion for momentum and heat on sloping terrain covered with vineyards Type Journal Article
Year 2012 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 162-163 Issue (up) Pages 98-107
Keywords coherent motion; cumulant expansions; heat and momentum transfer; sloping terrain; vineyards; planar fit method; boundary-layers; reynolds stress; dense canopies; plant canopies; flow; fluxes; forest; fields; hills
Abstract In boundary layer flows, it is now recognized that the net momentum and mass exchange rates are dominated by the statistical properties of ejecting and sweeping motion often linked to the presence of coherent turbulent structures. Over vineyards, three main factors impact the transport properties of such coherent motion: presence of sloping terrain, variations in leaf area index (LAI) during the growing season, and thermal stratification. The effect of these factors on momentum and heat transport is explored for three vineyard sites situated on different slopes. All three sites experience similar seasonal variation in LAI and mean wind conditions. The analysis is carried out using a conventional quadrant analysis technique and is tested against two models approximating the joint probability density function (JPDF) of the flow variables. It is demonstrated that a Gaussian JPDF explains much of the updraft and downdraft statistical contributions to heat and momentum transport efficiencies for all three sites. An incomplete or truncated third-order cumulant expansion method (ICEM) of the JPDF that retains only the mixed moments and ignores the skewness contributions describes well all the key properties of ejections and sweeps for all slopes, LAI, and stability classes. The implication of these findings for diagnosing potential failures of gradient-diffusion theory over complex terrain is discussed. Because only lower order moments are needed to describe the main characteristics of the JPDF, the use of the Moving Equilibrium Hypothesis (MEH) to predict these moments from the locally measured sensible heat flux and friction velocity is explored. Provided the planar fit coordinate transformation is applied to the data, the MEH can describe these statistical moments at all three sites regardless of terrain slopes and LAI values. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4471
Permanent link to this record
 

 
Author Zhai, R.; Tao, F.
Title Contributions of climate change and human activities to runoff change in seven typical catchments across China Type Journal Article
Year 2017 Publication Science of the Total Environment Abbreviated Journal Sci. Tot. Environ.
Volume 605 Issue (up) Pages 219-229
Keywords Catchments; Detection; Attribution; Runoff; VIC; Water resource; Weihe River-Basin; Hydrologic Response; Temporal-Changes; Loess Plateau; United-States; Yellow-River; Streamflow; Impacts; Variability; Model
Abstract Climate change and human activities are two major factors affecting water resource change. It is important to understand the roles of the major factors in affecting runoff change in different basins for watershed management. Here, we investigated the trends in climate and runoff in seven typical catchments in seven basins across China from 1961 to 2014. Then we attributed the runoff change to climate change and human activities in each catchment and in three time periods (1980s, 1990s and 2000s), using the VIC model and long-term runoff observation data. During 1961-2014, temperature increased significantly, while the trends in precipitation were insignificant in most of the catchments and inconsistent among the catchments. The runoff in most of the catchments showed a decreasing trend except the Yingluoxia catchment in the northwestern China. The contributions of climate change and human activities to runoff change varied in different catchments and time periods. In the 1980s, climate change contributed more to runoff change than human activities, which was 84%, 59%,-66%,-50%, 59%, 94%, and -59% in the Nianzishan, Yingluoxia, Xiahui, Yangjiaping, Sanjiangkou, Xixian, and Changle catchment, respectively. After that, human activities had played a more essential role in runoff change. In the 1990s and 2000s, human activities contributed more to runoff change than in the 1980s. The contribution by human activities accounted for 84%,- 68%, and 67% in the Yingluoxia, Xiahui, and Sanjiangkou catchment, respectively, in the 1990s; and -96%,-67%,-94%, and -142% in the Nianzishan, Yangjiaping, Xixian, and Changle catchment, respectively, in the 2000s. It is also noted that after 2000 human activities caused decrease in runoff in all catchments except the Yingluoxia. Our findings highlight that the effects of human activities, such as increase in water withdrawal, land use/cover change, operation of dams and reservoirs, should be well managed. (C) 2017 Elsevier B.V. All rights reserved.
Address 2017-09-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5177
Permanent link to this record