toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ibañez, M. url  openurl
  Title Ammonia and nitrous oxide emissions from grazing cattle in Kenya Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-27  
  Keywords  
  Abstract Fertilized crops and livestock management are the main anthropogenic sources of ammonia (NH3). Ammonia emissions imply a N loss from cropping systems and have negative effects on ecosystems and human health. In Africa, it is believed that a substantial proportion of NH3 emissions results from widespread livestock management, whereas inorganic fertilizers might be of low importance. However, there is a lack of information on the mechanisms underlying the NH3 emissions derived from livestock management. Use of passive sampling approaches may enhance our knowledge on NH3 emissions by allowing systematic ecosystem investigations at a low cost; however, these techniques have not been critically evaluated for the Tropics. The main goals of our study are 1) to assess the livestock influence on the emissions of NH3 in tropical ecosystems and 2) the evaluation of experimental techniques for estimation of NH3 emissions, which could be further implemented in Africa without investment in sophisticated analytical equipment.The study was carried out in October 2014 at the farm of ILRI (Nairobi, Kenya). Ammonia fluxes from a fenced plot occupied by a herd of cows during daytime was estimated by both 1) the micrometeorological mass balance integrated horizontal flux (IHF) method and 2) the Eddy-covariance (EC) technique (using a sonic anemometer and a highly sensitive fast response NH3 trace gas monitor). Passive flux samplers (PFS) internally coated with oxalic acid were installed at different heights in 1 central and 3 background masts. PFS were exchanged every 2 days and NH3 trapped was measured colorimetrically. Soil N2O emissions were also estimated by manual chambers every 48 h along with inorganic N contents in the topsoil.Contrary to our expectations, NH3 cow’s presence did not triggered NH3 emissions. Both IHF and EC showed very low NH3 emission values along the experiment, although sensitivity varied among methods (about 100 and 30 ng NH3 m-2 s-1 as obtained by the IHF method and EC, respectively). Heavy rainfall events (˃120 mm) may be responsible for lowered NH3 volatilization. Low soil nitrate concentrations, (<0.5 mg kg-1), suggested predominant N leaching after rainfall. Soil N2O emissions were negligible, showing a maximum of only 4.5 µg N-N2O m-2 h-1 during the first day. These preliminary results represent the first dataset of NH3 emissions under controlled conditions in tropical Africa, and provide the basis for further assessments of NH3 emissions and evaluations of techniques under different ecosystems and management scenarios. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2142  
Permanent link to this record
 

 
Author Kersebaum, K.C. url  openurl
  Title Simulating crop rotations and management across climatic zones in Europe – an intercomparison study using fifteen models Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-28  
  Keywords  
  Abstract Process based crop simulation models are widely used to assess crop production under current or future climate conditions. Most studies on climate impacts on crop growth are so far focussed on single crops and single-year simulations. However, it is known that the position of crops within a rotation can influence crop growth significantly due to carry-over effects between seasons. We compared crop models on crop rotation effects from five sites across Central Europe providing in total data of 301 cropping seasons and treatments. Treatments comprised irrigation, nitrogen (N) fertilisation, atmospheric [CO2], tillage, residue management, cover crops and soils. Crop rotations were simulated with 15 crop models as single-year simulations and/or continuous simulations over whole crop rotations in “restricted calibration” runs. Lower RMSE between observed and simulated crop yields were obtained for continuous runs as compared to single-year runs. Relatively low carry-over effects were observed due to equilibration of soil water over winter and high N fertilisation levels. Consistently, a sub-set of models applied to an additional rainfed Mediterranean site reproduced larger carry-over effects of soil water. Irrigation, N supply, cover crops and atmospheric [CO2] showed clearer effects than tillage and crop residue management. Model performance varied distinctly between crops showing the necessity to provide experimental data for model calibration also for less prominent crops. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2143  
Permanent link to this record
 

 
Author Hoveid, Ø. url  openurl
  Title An economist’s wish list for soil and crop modelling Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-25  
  Keywords  
  Abstract A requirement for successful integration of soil, crop and economic models is a relevant interface of the three. Economic farming models deal with choice of crops, crop management during growing season and stock management after harvest. With detailed daily weather information the state of the soil might be simulated so that a suitable sowing date can be estimated. Moreover with rational beliefs with respect to future crop prices, and with a crop model which responds to management, the management during the growing season might be optimized with respect to choice of cultivar, fertilization and irrigation. So far, as reflected by Müller and Robertson (2014), predictions of future crop yields according to crop models take only to small extent such farmer responses into account, and might therefore overestimate the responses of crop harvests to climate.Comparison of soil, crop and economic simulations with observed weather and crop outcomes might lead to estimation/calibration of unobserved parameters in all models. Such exercises need generic soil, crop and economic models which do not leave modelling outcomes to the crop modeller’s or economist’s discretion. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2140  
Permanent link to this record
 

 
Author Hutchings, N. url  openurl
  Title A comparison of farm-scale models to estimate greenhouse gas emissions from dairy farms in Europe Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-26  
  Keywords  
  Abstract Farm-scale models quantify the cycling of nitrogen (N) and carbon (C) so are powerful tools for assessing the impact of management-related decisions on greenhouse gas (GHG) emissions, especially on dairy cattle farms, where the internal cycling is particularly important. Farm models range in focus (economic, environmental) and the detail with which they represent C and N cycling. We compared four models from this range in terms of on-farm production and emissions of GHGs, using standardized scenarios. The models compared were SFarMod, DairyWise, FarmAC and HolosNor. The scenarios compared were based on two soil types (sandy clay versus heavy clay), two roughage systems (grass only versus grass and maize), and two climate types (Eindhoven versus Santander). Standard farm characteristics were; area (50 ha), milk yield (7000 kg/head/year), fertiliser (275 kg N and 150 kg N/ha/year for grass and maize, respectively). Potential yields for grass 10t dry matter (DM)/ha/year in both areas, maize 14 t DM/ha/ year in Eindhoven and 18t DM/ha/ year in Santander. The import of animal feed and the export/import manure and forages was minimized. Similar total farm direct GHG emissions for all models disguised a variation between models in the contribution of the different on-farm sources. There were large differences between models in the predictions of indirect GHG emission from nitrate leaching. Results could be explained by differences between models in the assumptions made and detail with which underlying processes were represented. We conclude that the choice of an appropriate farm model is highly dependent upon the role it should play and the context within which it will operate, so the current diversity of farm models will continue into the future. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2141  
Permanent link to this record
 

 
Author Holman, I. url  openurl
  Title Identifying where future landuse allocation in Europe is robust to climate and socio-economic uncertainty Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-23  
  Keywords  
  Abstract The spatial distribution of future European landuse will be influenced by yield changes arising from climate change and changes in profitability as a consequence of socio-economic change (arising from changing food demand; prices; technology etc).  To understand how these factors affect future land use allocation, a modelling system has been set up to predict agricultural land use across the EU under any scenario set of climate and socio- and techno-economic data. Metamodels of crop and forest yields, and optimal cropping and profit are derived from the outputs of the IMPEL, GOTILWA+, SFARMODand WaterGAP models. Profitability of each possible land use is modelled across the EU, assuming that use will change to the most profitable in the timescale being considered (2050). Land use in a grid is then allocated based on profit, with minimum profit thresholds set for intensive agriculture (arable or grassland), extensive agriculture, managed forest and finally unmanaged forest or unmanaged land.  The European demand for food as a function of population, imports, food preferences and bioenergy, is a production constraint, as is irrigation water available.  The model iterates prices until demand is satisfied (or cannot be met) and basin water usage for irrigation is not more than is available.This presentation describes the application of the modelling system across future climate change uncertainty space (as given by 60 combinations of downscaled 10’x10’ gridded climate outputs from 5 Global Climate Models, 3 climate sensitivities and 4 emissions scenario) under both baseline and four future socio-economic scenarios to identify those areas of Europe in which the spatial allocation of agricultural landcovers are robust to this uncertainty. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2138  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: