toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, S.; Tao, F.; Zhang, Z. doi  openurl
  Title Uncertainty from model structure is larger than that from model parameters in simulating rice phenology in China Type Journal Article
  Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 87 Issue Pages 30-39  
  Keywords Crop model, Extreme weather, Impacts, Rice development rate, Uncertainty; Climate-Change; Growth Duration; Crop Model; Ceres-Rice; Wheat; Temperature; Impact; Yield; Optimization; Performance  
  Abstract Rice models have been widely used in simulating and predicting rice phenology in contrasting climate zones, however the uncertainties from model structure (different equations or models) and/or model parameters were rarely investigated. Here, five rice phenological models/modules (Le., CERES-Rice, ORYZA2000, RCM, Beta Model and SIMRIW) were applied to simulate rice phenology at 23 experimental stations from 1992 to 2009 in two major rice cultivation regions of China: the northeastern China and the southwestern China. To investigate the uncertainties from model biophysical parameters, each model was run with randomly perturbed 50 sets of parameters. The results showed that the median of ensemble simulations were better than the simulation by most models. Models couldn’t simulate well in some specific years despite of parameters optimization, suggesting model structure limit model performance in some cases. The models adopting accumulative thermal time function (e.g., CERES-Rice and ORYZA2000) had better performance in the southwestern China, in contrast, those adopting exponential function (e.g., Beta model and RCM model) had better performance in the northeastern China. In northeastern China, the contribution of model structure and model parameters to model total variance was, respectively, about 55.90% and 44.10% in simulating heading date, and about 75.43% and 24.57% in simulating maturity date. In the southwestern China, the contribution of model structure and model parameters to model total variance was, respectively, about 79.97% and 27.03% in simulating heading date, about 92.15% and 7.85% in simulating maturity date. Uncertainty from model structure was the most relevant source. The results highlight that the temperature response functions of rice development rate under extreme climate conditions should be improved based on environment-controlled experimental data.  
  Address 2017-08-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5170  
Permanent link to this record
 

 
Author Özkan, Ş.; Hill, J. url  doi
openurl 
  Title Implementing innovative farm management practices on dairy farms:a review of feeding systems Type Journal Article
  Year 2015 Publication Turkish Journal of Veterinary and Animal Sciences Abbreviated Journal Turkish Journal of Veterinary and Animal Sciences  
  Volume 39 Issue Pages 1-9  
  Keywords australia; dairy; double-cropping; feeding system; pasture-based; profitability; forage crop systems; south-west victoria; nutritive characteristics; interannual variation; botanical composition; herbage accumulation; growth-rates; pasture; australia; cows  
  Abstract The Australian dairy industry relies primarily on pasture for its feed supply. However, the variability in rainfall negatively affects plant growth, leading to uncertainty in dryland feed supply, especially during periods of high milk price. New feeding (complementary) systems combining perennial ryegrass with another crop and/or pasture species may have the potential to mitigate this seasonal risk and improve productivity and profitability by providing off-season feed. To date, the majority of research studying the integration of alternative crops into pasture-based systems has focused on substitution and utilization of alternative feed sources. There has been little emphasis on the impacts of integration of forage crops into pasture-based systems. This review focuses on pasture-based feeding systems in southeastern Australia and how transitioning of systems contributes to improved productivity leading to improved profitability for dairy farmers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1300-0128 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4577  
Permanent link to this record
 

 
Author Sánchez, B.; Rasmussen, A.; Porter, J.R. doi  openurl
  Title Temperatures and the growth and development of maize and rice: a review Type Journal Article
  Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 20 Issue 2 Pages 408-417  
  Keywords Climate Change; Oryza/*growth & development; Temperature; Zea mays/*growth & development; cardinal temperatures; climatic change impacts; development; growth; lethal temperatures; maize; rice  
  Abstract Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this study, we have identified rice and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize, complementing an earlier study on wheat. Lethal temperatures and cardinal temperatures, together with error estimates, have been identified for phenological phases and development stages. Following the methodology of previous work, we have collected and statistically analysed temperature thresholds of the three crops for the key physiological processes such as leaf initiation, shoot growth and root growth and for the most susceptible phenological phases such as sowing to emergence, anthesis and grain filling. Our summary shows that cardinal temperatures are conservative between studies and are seemingly well defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur, IPCC-AR5 Approved no  
  Call Number MA @ admin @ Serial 4693  
Permanent link to this record
 

 
Author Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.; Cammarano, D.; Hatfield, J.L.; Rosenzweig, C.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.F.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Kumar, S.N.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; White, J.W.; Wolf, J. doi  openurl
  Title Multimodel ensembles of wheat growth: many models are better than one Type Journal Article
  Year 2015 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 21 Issue 2 Pages 911-925  
  Keywords Climate; Climate Change; Environment; *Models, Biological; Seasons; Triticum/*growth & development; ecophysiological model; ensemble modeling; model intercomparison; process-based model; uncertainty; wheat (Triticum aestivum L.)  
  Abstract Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4665  
Permanent link to this record
 

 
Author Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P. doi  openurl
  Title Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift Type Journal Article
  Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 20 Issue 12 Pages 3686-3699  
  Keywords Agriculture/*methods; China; *Climate Change; Geography; *Models, Biological; *Temperature; Time Factors; Zea mays/*growth & development; adaptation; agriculture; climate change; crop; cultivar; impacts; phenology  
  Abstract Maize phenology observations at 112 national agro-meteorological experiment stations across China spanning the years 1981-2009 were used to investigate the spatiotemporal changes of maize phenology, as well as the relations to temperature change and cultivar shift. The greater scope of the dataset allows us to estimate the effects of temperature change and cultivar shift on maize phenology more precisely. We found that maize sowing date advanced significantly at 26.0% of stations mainly for spring maize in northwestern, southwestern and northeastern China, although delayed significantly at 8.0% of stations mainly in northeastern China and the North China Plain (NCP). Maize maturity date delayed significantly at 36.6% of stations mainly in the northeastern China and the NCP. As a result, duration of maize whole growing period (GPw) was prolonged significantly at 41.1% of stations, although mean temperature (Tmean) during GPw increased at 72.3% of stations, significantly at 19.6% of stations, and Tmean was negatively correlated with the duration of GPw at 92.9% of stations and significantly at 42.9% of stations. Once disentangling the effects of temperature change and cultivar shift with an approach based on accumulated thermal development unit, we found that increase in temperature advanced heading date and maturity date and reduced the duration of GPw at 81.3%, 82.1% and 83.9% of stations on average by 3.2, 6.0 and 3.5 days/decade, respectively. By contrast, cultivar shift delayed heading date and maturity date and prolonged the duration of GPw at 75.0%, 94.6% and 92.9% of stations on average by 1.5, 6.5 and 6.5 days/decade, respectively. Our results suggest that maize production is adapting to ongoing climate change by shift of sowing date and adoption of cultivars with longer growing period. The spatiotemporal changes of maize phenology presented here can further guide the development of adaptation options for maize production in near future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4544  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: