toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tao, F.; Roetter, R.P.; Palosuo, T.; Hernandez Diaz-Ambrona, C.G.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Specka, X.; Hoffmann, H.; Ewert, F.; Dambreville, A.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Ferrise, R.; Bindi, M.; Cammarano, D.; Schulman, A.H. doi  openurl
  Title Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments Type Journal Article
  Year 2018 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 24 Issue 3 Pages 1291-1307  
  Keywords barley; climate change; Europe; impact; super-ensemble; uncertainty; Nitrogen Dynamics; Multimodel Ensembles; Simulation-Models; Change; Scenarios; Yield; Rice; Weather; Growth; Wheat; Maize  
  Abstract Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources.  
  Address 2018-03-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5194  
Permanent link to this record
 

 
Author Ruane, A.C.; Hudson, N.I.; Asseng, S.; Camarrano, D.; Ewert, F.; Martre, P.; Boote, K.J.; Thorburn, P.J.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, &rew J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.F.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Kumar, S.N.; Müller, C.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Rötter, R.P.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Wolf, J. url  doi
openurl 
  Title Multi-wheat-model ensemble responses to interannual climate variability Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 81 Issue Pages 86-101  
  Keywords Crop modeling; Uncertainty; Multi-model ensemble; Wheat; AgMIP; Climate; impacts; Temperature; Precipitation; lnterannual variability; simulation-model; crop model; nitrogen dynamics; winter-wheat; large-area; systems simulation; farming systems; yield response; growth; water  
  Abstract We compare 27 wheat models’ yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981-2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models’ climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R-2 <= 0.24) was found between the models’ sensitivities to interannual temperature variability and their response to long-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4769  
Permanent link to this record
 

 
Author Dumont, B.; Basso, B.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title Assessing and modeling economic and environmental impact of wheat nitrogen management in Belgium Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 79 Issue Pages 184-196  
  Keywords Tactical nitrogen management; Climatic variability; Probability risk; assessment; LARS-WG; Crop model; STICS; stics crop model; generic model; simulation; yield; water; soil; fertilizer; behavior; climate; maize  
  Abstract Future progress in wheat yield will rely on identifying genotypes & management practices better adapted to the fluctuating environment Nitrogen (N) fertilization is probably the most important practice impacting crop growth. However, the adverse environmental impacts of inappropriate N management (e.g., lixiviation) must be considered in the decision-making process. A formal decisional algorithm was developed to tactically optimize the economic & environmental N fertilization in wheat. Climatic uncertainty analysis was performed using stochastic weather time-series (LARS-WG). Crop growth was simulated using STICS model. Experiments were conducted to support the algorithm recommendations: winter wheat was sown between 2008 & 2014 in a classic loamy soil of the Hesbaye Region, Belgium (temperate climate). Results indicated that, most of the time, the third N fertilization applied at flag-leaf stage by farmers could be reduced. Environmental decision criterion is most of the time the limiting factor in comparison to the revenues expected by farmers. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4749  
Permanent link to this record
 

 
Author Kersebaum, K.C.; Boote, K.J.; Jorgenson, J.S.; Nendel, C.; Bindi, M.; Frühauf, C.; Gaiser, T.; Hoogenboom, G.; Kollas, C.; Olesen, J.E.; Rötter, R.P.; Ruget, F.; Thorburn, P.J.; Trnka, M.; Wegehenkel, M. url  doi
openurl 
  Title Analysis and classification of data sets for calibration and validation of agro-ecosystem models Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 72 Issue Pages 402-417  
  Keywords field experiments; data quality; crop modelling; data requirement; minimum data; software; different climatic zones; soil-moisture sensors; spatial variability; nitrogen dynamics; crop models; systems simulation; wheat yields; elevated co2; growth; field  
  Abstract Experimental field data are used at different levels of complexity to calibrate, validate and improve agroecosystem models to enhance their reliability for regional impact assessment. A methodological framework and software are presented to evaluate and classify data sets into four classes regarding their suitability for different modelling purposes. Weighting of inputs and variables for testing was set from the aspect of crop modelling. The software allows users to adjust weights according to their specific requirements. Background information is given for the variables with respect to their relevance for modelling and possible uncertainties. Examples are given for data sets of the different classes. The framework helps to assemble high quality data bases, to select data from data bases according to modellers requirements and gives guidelines to experimentalists for experimental design and decide on the most effective measurements to improve the usefulness of their data for modelling, statistical analysis and data assimilation. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4563  
Permanent link to this record
 

 
Author Coucheney, E.; Buis, S.; Launay, M.; Constantin, J.; Mary, B.; García de Cortázar-Atauri, I.; Ripoche, D.; Beaudoin, N.; Ruget, F.; &rianarisoa, K.S.; Le Bas, C.; Justes, E.; Léonard, J. url  doi
openurl 
  Title Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 64 Issue Pages 177-190  
  Keywords soil-crop model; stics; model performances; plant biomass; soil nitrogen; soil water; remote-sensing data; goodness-of-fit; hydrological model; simulation-models; solar-radiation; regional-scale; climate-change; generic model; data set; validation  
  Abstract Soil-crop models are increasingly used as predictive tools to assess yield and environmental impacts of agriculture in a growing diversity of contexts. They are however seldom evaluated at a given time over a wide domain of use. We tested here the performances of the STICS model (v8.2.2) with its standard set of parameters over a dataset covering 15 crops and a wide range of agropedoclimatic conditions in France. Model results showed a good overall accuracy, with little bias. Relative RMSE was larger for soil nitrate (49%) than for plant biomass (35%) and nitrogen (33%) and smallest for soil water (10%). Trends induced by contrasted environmental conditions and management practices were well reproduced. Finally, limited dependency of model errors on crops or environments indicated a satisfactory robustness. Such performances make STICS a valuable tool for studying the effects of changes in agro-ecosystems over the domain explored. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4554  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: