|   | 
Details
   web
Records
Author Watson, J.; Challinor, A.
Title The relative importance of rainfall, temperature and yield data for a regional-scale crop model Type Journal Article
Year 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 170 Issue Pages 47-57
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0168-1923 ISBN Medium
Area Expedition Conference
Notes CropM, ftnotmacsur, IPCC-AR5 Approved no
Call Number MA @ admin @ Serial 4930
Permanent link to this record
 

 
Author Lorite, I.J.; García-Vila, M.; Santos, C.; Ruiz-Ramos, M.; Fereres, E.
Title AquaData and AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop Type Journal Article
Year 2013 Publication Computers and Electronics in Agriculture Abbreviated Journal Computers and Electronics in Agriculture
Volume 96 Issue Pages 227-237
Keywords software tool; aquacrop; crop simulation model; geographic information system; spatial aggregation; fao crop model; irrigation management; iberian peninsula; southern spain; climate models; impacts; program; europe; system
Abstract The crop simulation model AquaCrop, recently developed by FAO can be used for a wide range of purposes. However, in its present form, its use over large areas or for applications that require a large number of simulations runs (e.g., long-term analysis), is not practical without developing software to facilitate such applications. Two tools for managing the inputs and outputs of AquaCrop, named AquaData and AquaGIS, have been developed for this purpose and are presented here. Both software utilities have been programmed in Delphi v. 5 and in addition, AquaGIS requires the Geographic Information System (GIS) programming tool MapObjects. These utilities allow the efficient management of input and output files, along with a GIS module to develop spatial analysis and effect spatial visualization of the results, facilitating knowledge dissemination. A sample of application of the utilities is given here, as an AquaCrop simulation analysis of impact of climate change on wheat yield in Southern Spain, which requires extensive input data preparation and output processing. The use of AquaCrop without the two utilities would have required approximately 1000 h of work, while the utilization of AquaData and AquaGIS reduced that time by more than 99%. Furthermore, the use of GIS, made it possible to perform a spatial analysis of the results, thus providing a new option to extend the use of the AquaCrop model to scales requiring spatial and temporal analyses. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0168-1699 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4609
Permanent link to this record
 

 
Author Mansouri, M.; Dumont, B.; Destain, M.-F.
Title Modeling and prediction of nonlinear environmental system using Bayesian methods Type Journal Article
Year 2013 Publication Computers and Electronics in Agriculture Abbreviated Journal Computers and Electronics in Agriculture
Volume 92 Issue Pages 16-31
Keywords state and parameter estimation; variational filter; particle filter; extended kalman filter; nonlinear environmental system; leaf area index and soil moisture model; extended kalman filter; state-space models; parameter-estimation; particle filters; navigation; tutorial; tracking
Abstract An environmental dynamic system is usually modeled as a nonlinear system described by a set of nonlinear ODEs. A central challenge in computational modeling of environmental systems is the determination of the model parameters. In these cases, estimating these variables or parameters from other easily obtained measurements can be extremely useful. This work addresses the problem of monitoring and modeling a leaf area index and soil moisture model (LSM) using state estimation. The performances of various conventional and state-of-the-art state estimation techniques are compared when they are utilized to achieve this objective. These techniques include the extended Kalman filter (EKF), particle filter (PF), and the more recently developed technique variational filter (VF). Specifically, two comparative studies are performed. In the first comparative study, the state variables (the leaf-area index LAI, the volumetric water content of the soil layer 1, HUR1 and the volumetric water content of the soil layer 2, HUR2) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error (RMSE) with respect to the noise-free data. In the second comparative study, the state variables as well as the model parameters are simultaneously estimated. In this case, in addition to comparing the performances of the various state estimation techniques, the effect of number of estimated model parameters on the accuracy and convergence of these techniques are also assessed. The results of both comparative studies show that the PF provides a higher accuracy than the EKF, which is due to the limited ability of the EKF to handle highly nonlinear processes. The results also show that the VF provides a significant improvement over the PF because, unlike the PF which depends on the choice of sampling distribution used to estimate the posterior distribution, the VF yields an optimum choice of the sampling distribution, which also accounts for the observed data. The results of the second comparative study show that, for all techniques, estimating more model parameters affects the estimation accuracy as well as the convergence of the estimated states and parameters. However, the VF can still provide both convergence as well as accuracy related advantages over other estimation methods. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0168-1699 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4495
Permanent link to this record
 

 
Author Van Oosten, M.J.; Sharkhuu, A.; Batelli, G.; Bressan, R.A.; Maggio, A.
Title The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress Type Journal Article
Year 2013 Publication Plant Molecular Biology Abbreviated Journal Plant Mol. Biol.
Volume 83 Issue 4-5 Pages 405-415
Keywords Anthocyanins/analysis/*metabolism; Arabidopsis/drug effects/*genetics/physiology/radiation effects; Arabidopsis Proteins/*genetics/metabolism; Basic-Leucine Zipper Transcription Factors/*genetics/metabolism; Flavonoids/metabolism; *Gene Expression Regulation, Plant; Light; Mutagenesis, Insertional; Phenotype; Plant Roots/drug effects/genetics/physiology/radiation effects; Plant Shoots/drug effects/genetics/physiology/radiation effects; Real-Time Polymerase Chain Reaction; Sodium Chloride/pharmacology; Stress, Physiological
Abstract The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3’H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0167-4412 1573-5028 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4616
Permanent link to this record
 

 
Author Porter, J.R.; Christensen, S.
Title Deconstructing crop processes and models via identities Type Journal Article
Year 2013 Publication Plant Cell and Environment Abbreviated Journal Plant Cell and Environment
Volume 36 Issue 11 Pages 1919-1925
Keywords Biomass; Carbon Dioxide/pharmacology; Climate Change; Crops, Agricultural/drug effects/*physiology; *Models, Biological; Kaya-Porter identity; crop models; deconstruction; resource use efficiency
Abstract This paper is part review and part opinion piece; it has three parts of increasing novelty and speculation in approach. The first presents an overview of how some of the major crop simulation models approach the issue of simulating the responses of crops to changing climatic and weather variables, mainly atmospheric CO2 concentration and increased and/or varying temperatures. It illustrates an important principle in models of a single cause having alternative effects and vice versa. The second part suggests some features, mostly missing in current crop models, that need to be included in the future, focussing on extreme events such as high temperature or extreme drought. The final opinion part is speculative but novel. It describes an approach to deconstruct resource use efficiencies into their constituent identities or elements based on the Kaya-Porter identity, each of which can be examined for responses to climate and climatic change. We give no promise that the final part is correct’, but we hope it can be a stimulation to thought, hypothesis and experiment, and perhaps a new modelling approach.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0140-7791 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4799
Permanent link to this record